#include "Rover.h" static void failsafe_check_static() { rover.failsafe_check(); } void Rover::init_ardupilot() { // initialise notify system notify.init(); notify_mode(control_mode); battery.init(); #if AP_RPM_ENABLED // Initialise RPM sensor rpm_sensor.init(); #endif rssi.init(); g2.windvane.init(serial_manager); // init baro before we start the GCS, so that the CLI baro test works barometer.init(); // setup telem slots with serial ports gcs().setup_uarts(); #if OSD_ENABLED == ENABLED osd.init(); #endif // initialise compass AP::compass().set_log_bit(MASK_LOG_COMPASS); AP::compass().init(); #if AP_AIRSPEED_ENABLED airspeed.set_log_bit(MASK_LOG_IMU); #endif // initialise rangefinder rangefinder.set_log_rfnd_bit(MASK_LOG_RANGEFINDER); rangefinder.init(ROTATION_NONE); #if HAL_PROXIMITY_ENABLED // init proximity sensor g2.proximity.init(); #endif #if AP_BEACON_ENABLED // init beacons used for non-gps position estimation g2.beacon.init(); #endif // and baro for EKF barometer.set_log_baro_bit(MASK_LOG_IMU); barometer.calibrate(); // Do GPS init gps.set_log_gps_bit(MASK_LOG_GPS); gps.init(); ins.set_log_raw_bit(MASK_LOG_IMU_RAW); init_rc_in(); // sets up rc channels deadzone g2.motors.init(get_frame_type()); // init motors including setting servo out channels ranges SRV_Channels::enable_aux_servos(); // init wheel encoders g2.wheel_encoder.init(); #if HAL_TORQEEDO_ENABLED // init torqeedo motor driver g2.torqeedo.init(); #endif #if AP_OPTICALFLOW_ENABLED // initialise optical flow sensor optflow.init(MASK_LOG_OPTFLOW); #endif // AP_OPTICALFLOW_ENABLED #if AP_RELAY_ENABLED relay.init(); #endif #if HAL_MOUNT_ENABLED // initialise camera mount camera_mount.init(); #endif #if AP_CAMERA_ENABLED // initialise camera camera.init(); #endif #if AC_PRECLAND_ENABLED // initialise precision landing init_precland(); #endif /* setup the 'main loop is dead' check. Note that this relies on the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); // initialize SmartRTL g2.smart_rtl.init(); #if AP_OAPATHPLANNER_ENABLED // initialise object avoidance g2.oa.init(); #endif set_mode(mode_initializing, ModeReason::INITIALISED); startup_INS(); #if AP_MISSION_ENABLED // initialise mission library mode_auto.mission.init(); #endif // initialise AP_Logger library #if HAL_LOGGING_ENABLED logger.setVehicle_Startup_Writer( FUNCTOR_BIND(&rover, &Rover::Log_Write_Vehicle_Startup_Messages, void) ); #endif Mode *initial_mode = mode_from_mode_num((enum Mode::Number)g.initial_mode.get()); if (initial_mode == nullptr) { initial_mode = &mode_initializing; } set_mode(*initial_mode, ModeReason::INITIALISED); // initialise rc channels rc().convert_options(RC_Channel::AUX_FUNC::ARMDISARM_UNUSED, RC_Channel::AUX_FUNC::ARMDISARM); rc().convert_options(RC_Channel::AUX_FUNC::SAVE_TRIM, RC_Channel::AUX_FUNC::TRIM_TO_CURRENT_SERVO_RC); rc().init(); rover.g2.sailboat.init(); // boat should loiter after completing a mission to avoid drifting off if (is_boat()) { rover.g2.mis_done_behave.set_default(ModeAuto::Mis_Done_Behave::MIS_DONE_BEHAVE_LOITER); } // flag that initialisation has completed initialised = true; } // update the ahrs flyforward setting which can allow // the vehicle's movements to be used to estimate heading void Rover::update_ahrs_flyforward() { bool flyforward = false; // boats never use movement to estimate heading if (!is_boat()) { // throttle threshold is 15% or 1/2 cruise throttle bool throttle_over_thresh = g2.motors.get_throttle() > MIN(g.throttle_cruise * 0.50f, 15.0f); // desired speed threshold of 1m/s bool desired_speed_over_thresh = g2.attitude_control.speed_control_active() && (g2.attitude_control.get_desired_speed() > 0.5f); if (throttle_over_thresh || (is_positive(g2.motors.get_throttle()) && desired_speed_over_thresh)) { uint32_t now = AP_HAL::millis(); // if throttle over threshold start timer if (flyforward_start_ms == 0) { flyforward_start_ms = now; } // if throttle over threshold for 2 seconds set flyforward to true flyforward = (now - flyforward_start_ms > 2000); } else { // reset timer flyforward_start_ms = 0; } } ahrs.set_fly_forward(flyforward); } // Check if this mode can be entered from the GCS bool Rover::gcs_mode_enabled(const Mode::Number mode_num) const { // List of modes that can be blocked, index is bit number in parameter bitmask static const uint8_t mode_list [] { (uint8_t)Mode::Number::MANUAL, (uint8_t)Mode::Number::ACRO, (uint8_t)Mode::Number::STEERING, (uint8_t)Mode::Number::LOITER, (uint8_t)Mode::Number::FOLLOW, (uint8_t)Mode::Number::SIMPLE, (uint8_t)Mode::Number::CIRCLE, (uint8_t)Mode::Number::AUTO, (uint8_t)Mode::Number::RTL, (uint8_t)Mode::Number::SMART_RTL, (uint8_t)Mode::Number::GUIDED, #if MODE_DOCK_ENABLED == ENABLED (uint8_t)Mode::Number::DOCK #endif }; return !block_GCS_mode_change((uint8_t)mode_num, mode_list, ARRAY_SIZE(mode_list)); } bool Rover::set_mode(Mode &new_mode, ModeReason reason) { if (control_mode == &new_mode) { // don't switch modes if we are already in the correct mode. return true; } // Check if GCS mode change is disabled via parameter if ((reason == ModeReason::GCS_COMMAND) && !gcs_mode_enabled((Mode::Number)new_mode.mode_number())) { gcs().send_text(MAV_SEVERITY_NOTICE,"Mode change to %s denied, GCS entry disabled (FLTMODE_GCSBLOCK)", new_mode.name4()); return false; } Mode &old_mode = *control_mode; if (!new_mode.enter()) { // Log error that we failed to enter desired flight mode LOGGER_WRITE_ERROR(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(new_mode.mode_number())); gcs().send_text(MAV_SEVERITY_WARNING, "Flight mode change failed"); return false; } control_mode = &new_mode; #if AP_FENCE_ENABLED // pilot requested flight mode change during a fence breach indicates pilot is attempting to manually recover // this flight mode change could be automatic (i.e. fence, battery, GPS or GCS failsafe) // but it should be harmless to disable the fence temporarily in these situations as well fence.manual_recovery_start(); #endif #if AP_CAMERA_ENABLED camera.set_is_auto_mode(control_mode->mode_number() == Mode::Number::AUTO); #endif old_mode.exit(); control_mode_reason = reason; #if HAL_LOGGING_ENABLED logger.Write_Mode((uint8_t)control_mode->mode_number(), control_mode_reason); #endif gcs().send_message(MSG_HEARTBEAT); notify_mode(control_mode); return true; } bool Rover::set_mode(const uint8_t new_mode, ModeReason reason) { static_assert(sizeof(Mode::Number) == sizeof(new_mode), "The new mode can't be mapped to the vehicles mode number"); return rover.set_mode(static_cast(new_mode), reason); } bool Rover::set_mode(Mode::Number new_mode, ModeReason reason) { Mode *mode = rover.mode_from_mode_num(new_mode); if (mode == nullptr) { notify_no_such_mode((uint8_t)new_mode); return false; } return rover.set_mode(*mode, reason); } void Rover::startup_INS(void) { gcs().send_text(MAV_SEVERITY_INFO, "Beginning INS calibration. Do not move vehicle"); hal.scheduler->delay(100); ahrs.init(); // say to EKF that rover only move by going forward ahrs.set_fly_forward(true); ahrs.set_vehicle_class(AP_AHRS::VehicleClass::GROUND); ins.init(scheduler.get_loop_rate_hz()); ahrs.reset(); } // update notify with mode change void Rover::notify_mode(const Mode *mode) { AP_Notify::flags.autopilot_mode = mode->is_autopilot_mode(); notify.flags.flight_mode = (uint8_t)mode->mode_number(); notify.set_flight_mode_str(mode->name4()); } /* check a digital pin for high,low (1/0) */ uint8_t Rover::check_digital_pin(uint8_t pin) { // ensure we are in input mode hal.gpio->pinMode(pin, HAL_GPIO_INPUT); // enable pullup hal.gpio->write(pin, 1); return hal.gpio->read(pin); } #if HAL_LOGGING_ENABLED /* should we log a message type now? */ bool Rover::should_log(uint32_t mask) { return logger.should_log(mask); } #endif // returns true if vehicle is a boat // this affects whether the vehicle tries to maintain position after reaching waypoints bool Rover::is_boat() const { return ((enum frame_class)g2.frame_class.get() == FRAME_BOAT); } #include #include #if HAL_ADSB_ENABLED // dummy method to avoid linking AP_Avoidance AP_Avoidance *AP::ap_avoidance() { return nullptr; } #endif