// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /// @file AP_MotorsHeli.h /// @brief Motor control class for Traditional Heli #ifndef __AP_MOTORS_HELI_H__ #define __AP_MOTORS_HELI_H__ #include #include #include // ArduPilot Mega Vector/Matrix math Library #include // RC Channel Library #include "AP_Motors_Class.h" #include "AP_MotorsHeli_RSC.h" // maximum number of swashplate servos #define AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS 3 // servo output rates #define AP_MOTORS_HELI_SPEED_DEFAULT 125 // default servo update rate for helicopters #define AP_MOTORS_HELI_SPEED_DIGITAL_SERVOS 125 // update rate for digital servos #define AP_MOTORS_HELI_SPEED_ANALOG_SERVOS 125 // update rate for analog servos // default swash min and max angles and positions #define AP_MOTORS_HELI_SWASH_CYCLIC_MAX 2500 #define AP_MOTORS_HELI_COLLECTIVE_MIN 1250 #define AP_MOTORS_HELI_COLLECTIVE_MAX 1750 #define AP_MOTORS_HELI_COLLECTIVE_MID 1500 // swash min and max position while in stabilize mode (as a number from 0 ~ 100) #define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MIN 0 #define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MAX 100 // swash min while landed or landing (as a number from 0 ~ 1000 #define AP_MOTORS_HELI_LAND_COLLECTIVE_MIN 0 // default main rotor speed (ch8 out) as a number from 0 ~ 1000 #define AP_MOTORS_HELI_RSC_SETPOINT 700 // default main rotor critical speed #define AP_MOTORS_HELI_RSC_CRITICAL 500 // RSC output defaults #define AP_MOTORS_HELI_RSC_IDLE_DEFAULT 0 #define AP_MOTORS_HELI_RSC_POWER_LOW_DEFAULT 200 #define AP_MOTORS_HELI_RSC_POWER_HIGH_DEFAULT 700 // default main rotor ramp up time in seconds #define AP_MOTORS_HELI_RSC_RAMP_TIME 1 // 1 second to ramp output to main rotor ESC to full power (most people use exterrnal govenors so we can ramp up quickly) #define AP_MOTORS_HELI_RSC_RUNUP_TIME 10 // 10 seconds for rotor to reach full speed // flybar types #define AP_MOTORS_HELI_NOFLYBAR 0 #define AP_MOTORS_HELI_FLYBAR 1 class AP_HeliControls; /// @class AP_MotorsHeli class AP_MotorsHeli : public AP_Motors { public: /// Constructor AP_MotorsHeli( uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) : AP_Motors(loop_rate, speed_hz) { AP_Param::setup_object_defaults(this, var_info); // initialise flags _heliflags.landing_collective = 0; _heliflags.rotor_runup_complete = 0; }; // init void Init(); // set update rate to motors - a value in hertz // you must have setup_motors before calling this virtual void set_update_rate( uint16_t speed_hz ) = 0; // enable - starts allowing signals to be sent to motors virtual void enable() = 0; // output_min - sets servos to neutral point with motors stopped void output_min(); // output_test - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 virtual void output_test(uint8_t motor_seq, int16_t pwm) = 0; // slow_start - ignored by helicopters void slow_start(bool true_false) {}; // // heli specific methods // // parameter_check - returns true if helicopter specific parameters are sensible, used for pre-arm check bool parameter_check(bool display_msg) const; // has_flybar - returns true if we have a mechical flybar virtual bool has_flybar() const { return AP_MOTORS_HELI_NOFLYBAR; } // get_collective_mid - returns collective mid position as a number from 0 ~ 1000 int16_t get_collective_mid() const { return _collective_mid; } // get_collective_out - returns collective position from last output as a number from 0 ~ 1000 int16_t get_collective_out() const { return _collective_out; } // set_collective_for_landing - limits collective from going too low if we know we are landed void set_collective_for_landing(bool landing) { _heliflags.landing_collective = landing; } // get_rsc_mode - gets the rotor speed control method (AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH or AP_MOTORS_HELI_RSC_MODE_SETPOINT) uint8_t get_rsc_mode() const { return _rsc_mode; } // get_rsc_setpoint - gets contents of _rsc_setpoint parameter (0~1000) int16_t get_rsc_setpoint() const { return _rsc_setpoint; } // set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000 virtual void set_desired_rotor_speed(int16_t desired_speed) = 0; // get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1000 virtual int16_t get_desired_rotor_speed() const = 0; // get_main_rotor_speed - gets estimated or measured main rotor speed virtual int16_t get_main_rotor_speed() const = 0; // return true if the main rotor is up to speed bool rotor_runup_complete() const { return _heliflags.rotor_runup_complete; } // rotor_speed_above_critical - return true if rotor speed is above that critical for flight virtual bool rotor_speed_above_critical() const = 0; // calculate_scalars - must be implemented by child classes virtual void calculate_scalars() = 0; // var_info for holding Parameter information static const struct AP_Param::GroupInfo var_info[]; // set_delta_phase_angle for setting variable phase angle compensation and force recalculation of collective factors // ignored unless overloaded by child classes virtual void set_delta_phase_angle(int16_t angle){}; // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict virtual uint16_t get_motor_mask() = 0; // set_radio_passthrough used to pass radio inputs directly to outputs void set_radio_passthrough(int16_t radio_roll_input, int16_t radio_pitch_input, int16_t radio_throttle_input, int16_t radio_yaw_input); // reset_radio_passthrough used to reset all radio inputs to center void reset_radio_passthrough(); // output - sends commands to the motors void output(); // supports_yaw_passthrough virtual bool supports_yaw_passthrough() const { return false; } protected: // output - sends commands to the motors void output_armed_stabilizing(); void output_armed_not_stabilizing(); void output_armed_zero_throttle(); void output_disarmed(); // update_motor_controls - sends commands to motor controllers virtual void update_motor_control(RotorControlState state) = 0; // reset_flight_controls - resets all controls and scalars to flight status void reset_flight_controls(); // update the throttle input filter void update_throttle_filter(); // move_actuators - moves swash plate and tail rotor virtual void move_actuators(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out) = 0; // reset_swash_servo - free up swash servo for maximum movement static void reset_swash_servo(RC_Channel& servo); // init_outputs - initialise Servo/PWM ranges and endpoints virtual void init_outputs() = 0; // calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position virtual void calculate_roll_pitch_collective_factors() = 0; // flags bitmask struct heliflags_type { uint8_t landing_collective : 1; // true if collective is setup for landing which has much higher minimum uint8_t rotor_runup_complete : 1; // true if the rotors have had enough time to wind up } _heliflags; // parameters AP_Int16 _cyclic_max; // Maximum cyclic angle of the swash plate in centi-degrees AP_Int16 _collective_min; // Lowest possible servo position for the swashplate AP_Int16 _collective_max; // Highest possible servo position for the swashplate AP_Int16 _collective_mid; // Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades) AP_Int8 _servo_manual; // Pass radio inputs directly to servos during set-up through mission planner AP_Int16 _rsc_setpoint; // rotor speed when RSC mode is set to is enabledv AP_Int8 _rsc_mode; // Which main rotor ESC control mode is active AP_Int8 _rsc_ramp_time; // Time in seconds for the output to the main rotor's ESC to reach full speed AP_Int8 _rsc_runup_time; // Time in seconds for the main rotor to reach full speed. Must be longer than _rsc_ramp_time AP_Int16 _land_collective_min; // Minimum collective when landed or landing AP_Int16 _rsc_critical; // Rotor speed below which flight is not possible AP_Int16 _rsc_idle_output; // Rotor control output while at idle AP_Int16 _rsc_power_low; // throttle value sent to throttle servo at zero collective pitch AP_Int16 _rsc_power_high; // throttle value sent to throttle servo at maximum collective pitch // internal variables float _rollFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS]; float _pitchFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS]; float _collectiveFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS]; float _roll_scaler = 1; // scaler to convert roll input from radio (i.e. -4500 ~ 4500) to max roll range float _pitch_scaler = 1; // scaler to convert pitch input from radio (i.e. -4500 ~ 4500) to max pitch range float _collective_scalar = 1; // collective scalar to convert pwm form (i.e. 0 ~ 1000) passed in to actual servo range (i.e 1250~1750 would be 500) float _main_rotor_power = 0; // estimated main rotor power load, range 0-1.0f, used for RSC feedforward int16_t _collective_out = 0; // actual collective pitch value. Required by the main code for calculating cruise throttle int16_t _collective_mid_pwm = 0; // collective mid parameter value converted to pwm form (i.e. 0 ~ 1000) int16_t _delta_phase_angle = 0; // phase angle dynamic compensation int16_t _roll_radio_passthrough = 0; // roll control PWM direct from radio, used for manual control int16_t _pitch_radio_passthrough = 0; // pitch control PWM direct from radio, used for manual control int16_t _throttle_radio_passthrough = 0; // throttle control PWM direct from radio, used for manual control int16_t _yaw_radio_passthrough = 0; // yaw control PWM direct from radio, used for manual control int16_t _collective_range = 0; // maximum absolute collective pitch range (500 - 1000) }; #endif // AP_MOTORSHELI