/* * AP_UAVCAN.cpp * * Author: Eugene Shamaev */ #include #include #if HAL_WITH_UAVCAN #include "AP_UAVCAN.h" #include #include #include // Zubax GPS and other GPS, baro, magnetic sensors #include #include #include #include #include #include #include #include #include extern const AP_HAL::HAL& hal; #define debug_uavcan(level, fmt, args...) do { if ((level) <= AP_BoardConfig_CAN::get_can_debug()) { hal.console->printf(fmt, ##args); }} while (0) // Translation of all messages from UAVCAN structures into AP structures is done // in AP_UAVCAN and not in corresponding drivers. // The overhead of including definitions of DSDL is very high and it is best to // concentrate in one place. // TODO: temperature can come not only from baro. There should be separation on node ID // to check where it belongs to. If it is not baro that is the source, separate layer // of listeners/nodes should be added. // table of user settable CAN bus parameters const AP_Param::GroupInfo AP_UAVCAN::var_info[] = { // @Param: NODE // @DisplayName: UAVCAN node that is used for this network // @Description: UAVCAN node should be set implicitly // @Range: 1 250 // @User: Advanced AP_GROUPINFO("NODE", 1, AP_UAVCAN, _uavcan_node, 10), // @Param: SRV_BM // @DisplayName: RC Out channels to be transmitted as servo over UAVCAN // @Description: Bitmask with one set for channel to be transmitted as a servo command over UAVCAN // @Bitmask: 0: Servo 1, 1: Servo 2, 2: Servo 3, 3: Servo 4, 4: Servo 5, 5: Servo 6, 6: Servo 7, 7: Servo 8, 8: Servo 9, 9: Servo 10, 10: Servo 11, 11: Servo 12, 12: Servo 13, 13: Servo 14, 14: Servo 15 // @User: Advanced AP_GROUPINFO("SRV_BM", 2, AP_UAVCAN, _servo_bm, 255), // @Param: ESC_BM // @DisplayName: RC Out channels to be transmitted as ESC over UAVCAN // @Description: Bitmask with one set for channel to be transmitted as a ESC command over UAVCAN // @Bitmask: 0: ESC 1, 1: ESC 2, 2: ESC 3, 3: ESC 4, 4: ESC 5, 5: ESC 6, 6: ESC 7, 7: ESC 8, 8: ESC 9, 9: ESC 10, 10: ESC 11, 11: ESC 12, 12: ESC 13, 13: ESC 14, 14: ESC 15, 15: ESC 16 // @User: Advanced AP_GROUPINFO("ESC_BM", 3, AP_UAVCAN, _esc_bm, 255), AP_GROUPEND }; static void gnss_fix_cb(const uavcan::ReceivedDataStructure& msg, uint8_t mgr) { if (hal.can_mgr[mgr] != nullptr) { AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN(); if (ap_uavcan != nullptr) { AP_GPS::GPS_State *state = ap_uavcan->find_gps_node(msg.getSrcNodeID().get()); if (state != nullptr) { bool process = false; if (msg.status == uavcan::equipment::gnss::Fix::STATUS_NO_FIX) { state->status = AP_GPS::GPS_Status::NO_FIX; } else { if (msg.status == uavcan::equipment::gnss::Fix::STATUS_TIME_ONLY) { state->status = AP_GPS::GPS_Status::NO_FIX; } else if (msg.status == uavcan::equipment::gnss::Fix::STATUS_2D_FIX) { state->status = AP_GPS::GPS_Status::GPS_OK_FIX_2D; process = true; } else if (msg.status == uavcan::equipment::gnss::Fix::STATUS_3D_FIX) { state->status = AP_GPS::GPS_Status::GPS_OK_FIX_3D; process = true; } if (msg.gnss_time_standard == uavcan::equipment::gnss::Fix::GNSS_TIME_STANDARD_UTC) { uint64_t epoch_ms = uavcan::UtcTime(msg.gnss_timestamp).toUSec(); epoch_ms /= 1000; uint64_t gps_ms = epoch_ms - UNIX_OFFSET_MSEC; state->time_week = (uint16_t)(gps_ms / AP_MSEC_PER_WEEK); state->time_week_ms = (uint32_t)(gps_ms - (state->time_week) * AP_MSEC_PER_WEEK); } } if (process) { Location loc = { }; loc.lat = msg.latitude_deg_1e8 / 10; loc.lng = msg.longitude_deg_1e8 / 10; loc.alt = msg.height_msl_mm / 10; state->location = loc; state->location.options = 0; if (!uavcan::isNaN(msg.ned_velocity[0])) { Vector3f vel(msg.ned_velocity[0], msg.ned_velocity[1], msg.ned_velocity[2]); state->velocity = vel; state->ground_speed = norm(vel.x, vel.y); state->ground_course = wrap_360(degrees(atan2f(vel.y, vel.x))); state->have_vertical_velocity = true; } else { state->have_vertical_velocity = false; } float pos_cov[9]; msg.position_covariance.unpackSquareMatrix(pos_cov); if (!uavcan::isNaN(pos_cov[8])) { if (pos_cov[8] > 0) { state->vertical_accuracy = sqrtf(pos_cov[8]); state->have_vertical_accuracy = true; } else { state->have_vertical_accuracy = false; } } else { state->have_vertical_accuracy = false; } const float horizontal_pos_variance = MAX(pos_cov[0], pos_cov[4]); if (!uavcan::isNaN(horizontal_pos_variance)) { if (horizontal_pos_variance > 0) { state->horizontal_accuracy = sqrtf(horizontal_pos_variance); state->have_horizontal_accuracy = true; } else { state->have_horizontal_accuracy = false; } } else { state->have_horizontal_accuracy = false; } float vel_cov[9]; msg.velocity_covariance.unpackSquareMatrix(vel_cov); if (!uavcan::isNaN(vel_cov[0])) { state->speed_accuracy = sqrtf((vel_cov[0] + vel_cov[4] + vel_cov[8]) / 3.0); state->have_speed_accuracy = true; } else { state->have_speed_accuracy = false; } state->num_sats = msg.sats_used; } else { state->have_vertical_velocity = false; state->have_vertical_accuracy = false; state->have_horizontal_accuracy = false; state->have_speed_accuracy = false; state->num_sats = 0; } state->last_gps_time_ms = AP_HAL::millis(); // after all is filled, update all listeners with new data ap_uavcan->update_gps_state(msg.getSrcNodeID().get()); } } } } static void gnss_fix_cb0(const uavcan::ReceivedDataStructure& msg) { gnss_fix_cb(msg, 0); } static void gnss_fix_cb1(const uavcan::ReceivedDataStructure& msg) { gnss_fix_cb(msg, 1); } static void (*gnss_fix_cb_arr[2])(const uavcan::ReceivedDataStructure& msg) = { gnss_fix_cb0, gnss_fix_cb1 }; static void gnss_aux_cb(const uavcan::ReceivedDataStructure& msg, uint8_t mgr) { if (hal.can_mgr[mgr] != nullptr) { AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN(); if (ap_uavcan != nullptr) { AP_GPS::GPS_State *state = ap_uavcan->find_gps_node(msg.getSrcNodeID().get()); if (state != nullptr) { if (!uavcan::isNaN(msg.hdop)) { state->hdop = msg.hdop * 100.0; } if (!uavcan::isNaN(msg.vdop)) { state->vdop = msg.vdop * 100.0; } } } } } static void gnss_aux_cb0(const uavcan::ReceivedDataStructure& msg) { gnss_aux_cb(msg, 0); } static void gnss_aux_cb1(const uavcan::ReceivedDataStructure& msg) { gnss_aux_cb(msg, 1); } static void (*gnss_aux_cb_arr[2])(const uavcan::ReceivedDataStructure& msg) = { gnss_aux_cb0, gnss_aux_cb1 }; static void magnetic_cb(const uavcan::ReceivedDataStructure& msg, uint8_t mgr) { if (hal.can_mgr[mgr] != nullptr) { AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN(); if (ap_uavcan != nullptr) { AP_UAVCAN::Mag_Info *state = ap_uavcan->find_mag_node(msg.getSrcNodeID().get()); if (state != nullptr) { state->mag_vector[0] = msg.magnetic_field_ga[0]; state->mag_vector[1] = msg.magnetic_field_ga[1]; state->mag_vector[2] = msg.magnetic_field_ga[2]; // after all is filled, update all listeners with new data ap_uavcan->update_mag_state(msg.getSrcNodeID().get()); } } } } static void magnetic_cb0(const uavcan::ReceivedDataStructure& msg) { magnetic_cb(msg, 0); } static void magnetic_cb1(const uavcan::ReceivedDataStructure& msg) { magnetic_cb(msg, 1); } static void (*magnetic_cb_arr[2])(const uavcan::ReceivedDataStructure& msg) = { magnetic_cb0, magnetic_cb1 }; static void air_data_sp_cb(const uavcan::ReceivedDataStructure& msg, uint8_t mgr) { if (hal.can_mgr[mgr] != nullptr) { AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN(); if (ap_uavcan != nullptr) { AP_UAVCAN::Baro_Info *state = ap_uavcan->find_baro_node(msg.getSrcNodeID().get()); if (state != nullptr) { state->pressure = msg.static_pressure; state->pressure_variance = msg.static_pressure_variance; // after all is filled, update all listeners with new data ap_uavcan->update_baro_state(msg.getSrcNodeID().get()); } } } } static void air_data_sp_cb0(const uavcan::ReceivedDataStructure& msg) { air_data_sp_cb(msg, 0); } static void air_data_sp_cb1(const uavcan::ReceivedDataStructure& msg) { air_data_sp_cb(msg, 1); } static void (*air_data_sp_cb_arr[2])(const uavcan::ReceivedDataStructure& msg) = { air_data_sp_cb0, air_data_sp_cb1 }; // Temperature is not main parameter so do not update listeners when it is received static void air_data_st_cb(const uavcan::ReceivedDataStructure& msg, uint8_t mgr) { if (hal.can_mgr[mgr] != nullptr) { AP_UAVCAN *ap_uavcan = hal.can_mgr[mgr]->get_UAVCAN(); if (ap_uavcan != nullptr) { AP_UAVCAN::Baro_Info *state = ap_uavcan->find_baro_node(msg.getSrcNodeID().get()); if (state != nullptr) { state->temperature = msg.static_temperature; state->temperature_variance = msg.static_temperature_variance; } } } } static void air_data_st_cb0(const uavcan::ReceivedDataStructure& msg) { air_data_st_cb(msg, 0); } static void air_data_st_cb1(const uavcan::ReceivedDataStructure& msg) { air_data_st_cb(msg, 1); } static void (*air_data_st_cb_arr[2])(const uavcan::ReceivedDataStructure& msg) = { air_data_st_cb0, air_data_st_cb1 }; // publisher interfaces static uavcan::Publisher* act_out_array[MAX_NUMBER_OF_CAN_DRIVERS]; static uavcan::Publisher* esc_raw[MAX_NUMBER_OF_CAN_DRIVERS]; AP_UAVCAN::AP_UAVCAN() : _node_allocator( UAVCAN_NODE_POOL_SIZE, UAVCAN_NODE_POOL_SIZE) { AP_Param::setup_object_defaults(this, var_info); for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) { _rco_conf[i].active = false; } for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) { _gps_nodes[i] = UINT8_MAX; _gps_node_taken[i] = 0; } for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) { _baro_nodes[i] = UINT8_MAX; _baro_node_taken[i] = 0; } for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) { _mag_nodes[i] = UINT8_MAX; _mag_node_taken[i] = 0; } for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) { _gps_listener_to_node[i] = UINT8_MAX; _gps_listeners[i] = nullptr; _baro_listener_to_node[i] = UINT8_MAX; _baro_listeners[i] = nullptr; _mag_listener_to_node[i] = UINT8_MAX; _mag_listeners[i] = nullptr; } _rc_out_sem = hal.util->new_semaphore(); debug_uavcan(2, "AP_UAVCAN constructed\n\r"); } AP_UAVCAN::~AP_UAVCAN() { } bool AP_UAVCAN::try_init(void) { if (_parent_can_mgr != nullptr) { if (_parent_can_mgr->is_initialized() && !_initialized) { _uavcan_i = UINT8_MAX; for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++) { if (_parent_can_mgr == hal.can_mgr[i]) { _uavcan_i = i; break; } } if(_uavcan_i == UINT8_MAX) { return false; } auto *node = get_node(); if (node != nullptr) { if (!node->isStarted()) { uavcan::NodeID self_node_id(_uavcan_node); node->setNodeID(self_node_id); char ndname[20]; snprintf(ndname, sizeof(ndname), "org.ardupilot:%u", _uavcan_i); uavcan::NodeStatusProvider::NodeName name(ndname); node->setName(name); uavcan::protocol::SoftwareVersion sw_version; // Standard type uavcan.protocol.SoftwareVersion sw_version.major = AP_UAVCAN_SW_VERS_MAJOR; sw_version.minor = AP_UAVCAN_SW_VERS_MINOR; node->setSoftwareVersion(sw_version); uavcan::protocol::HardwareVersion hw_version; // Standard type uavcan.protocol.HardwareVersion hw_version.major = AP_UAVCAN_HW_VERS_MAJOR; hw_version.minor = AP_UAVCAN_HW_VERS_MINOR; node->setHardwareVersion(hw_version); const int node_start_res = node->start(); if (node_start_res < 0) { debug_uavcan(1, "UAVCAN: node start problem\n\r"); } uavcan::Subscriber *gnss_fix; gnss_fix = new uavcan::Subscriber(*node); const int gnss_fix_start_res = gnss_fix->start(gnss_fix_cb_arr[_uavcan_i]); if (gnss_fix_start_res < 0) { debug_uavcan(1, "UAVCAN GNSS subscriber start problem\n\r"); return false; } uavcan::Subscriber *gnss_aux; gnss_aux = new uavcan::Subscriber(*node); const int gnss_aux_start_res = gnss_aux->start(gnss_aux_cb_arr[_uavcan_i]); if (gnss_aux_start_res < 0) { debug_uavcan(1, "UAVCAN GNSS Aux subscriber start problem\n\r"); return false; } uavcan::Subscriber *magnetic; magnetic = new uavcan::Subscriber(*node); const int magnetic_start_res = magnetic->start(magnetic_cb_arr[_uavcan_i]); if (magnetic_start_res < 0) { debug_uavcan(1, "UAVCAN Compass subscriber start problem\n\r"); return false; } uavcan::Subscriber *air_data_sp; air_data_sp = new uavcan::Subscriber(*node); const int air_data_sp_start_res = air_data_sp->start(air_data_sp_cb_arr[_uavcan_i]); if (air_data_sp_start_res < 0) { debug_uavcan(1, "UAVCAN Baro subscriber start problem\n\r"); return false; } uavcan::Subscriber *air_data_st; air_data_st = new uavcan::Subscriber(*node); const int air_data_st_start_res = air_data_st->start(air_data_st_cb_arr[_uavcan_i]); if (air_data_st_start_res < 0) { debug_uavcan(1, "UAVCAN Temperature subscriber start problem\n\r"); return false; } act_out_array[_uavcan_i] = new uavcan::Publisher(*node); act_out_array[_uavcan_i]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20)); act_out_array[_uavcan_i]->setPriority(uavcan::TransferPriority::OneLowerThanHighest); esc_raw[_uavcan_i] = new uavcan::Publisher(*node); esc_raw[_uavcan_i]->setTxTimeout(uavcan::MonotonicDuration::fromMSec(20)); esc_raw[_uavcan_i]->setPriority(uavcan::TransferPriority::OneLowerThanHighest); /* * Informing other nodes that we're ready to work. * Default mode is INITIALIZING. */ node->setModeOperational(); _initialized = true; debug_uavcan(1, "UAVCAN: init done\n\r"); return true; } } } if (_initialized) { return true; } } return false; } bool AP_UAVCAN::rc_out_sem_take() { bool sem_ret = _rc_out_sem->take(10); if (!sem_ret) { debug_uavcan(1, "AP_UAVCAN RCOut semaphore fail\n\r"); } return sem_ret; } void AP_UAVCAN::rc_out_sem_give() { _rc_out_sem->give(); } void AP_UAVCAN::do_cyclic(void) { if (_initialized) { auto *node = get_node(); const int error = node->spin(uavcan::MonotonicDuration::fromMSec(1)); if (error < 0) { hal.scheduler->delay_microseconds(1000); } else { if (rc_out_sem_take()) { if (_rco_armed) { bool repeat_send; // if we have any Servos in bitmask if (_servo_bm > 0) { uint8_t starting_servo = 0; do { repeat_send = false; uavcan::equipment::actuator::ArrayCommand msg; uint8_t i; // UAVCAN can hold maximum of 15 commands in one frame for (i = 0; starting_servo < UAVCAN_RCO_NUMBER && i < 15; starting_servo++) { uavcan::equipment::actuator::Command cmd; /* * Servo output uses a range of 1000-2000 PWM for scaling. * This converts output PWM from [1000:2000] range to [-1:1] range that * is passed to servo as unitless type via UAVCAN. * This approach allows for MIN/TRIM/MAX values to be used fully on * autopilot side and for servo it should have the setup to provide maximum * physically possible throws at [-1:1] limits. */ if (_rco_conf[starting_servo].active && ((((uint32_t) 1) << starting_servo) & _servo_bm)) { cmd.actuator_id = starting_servo + 1; // TODO: other types cmd.command_type = uavcan::equipment::actuator::Command::COMMAND_TYPE_UNITLESS; // TODO: failsafe, safety cmd.command_value = constrain_float(((float) _rco_conf[starting_servo].pulse - 1000.0) / 500.0 - 1.0, -1.0, 1.0); msg.commands.push_back(cmd); i++; } } if (i > 0) { act_out_array[_uavcan_i]->broadcast(msg); if (i == 15) { repeat_send = true; } } } while (repeat_send); } // if we have any ESC's in bitmask if (_esc_bm > 0) { static const int cmd_max = uavcan::equipment::esc::RawCommand::FieldTypes::cmd::RawValueType::max(); uavcan::equipment::esc::RawCommand esc_msg; uint8_t active_esc_num = 0, max_esc_num = 0; uint8_t k = 0; // find out how many esc we have enabled and if they are active at all for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) { if ((((uint32_t) 1) << i) & _esc_bm) { max_esc_num = i + 1; if (_rco_conf[i].active) { active_esc_num++; } } } // if at least one is active (update) we need to send to all if (active_esc_num > 0) { k = 0; for (uint8_t i = 0; i < max_esc_num && k < 20; i++) { uavcan::equipment::actuator::Command cmd; if ((((uint32_t) 1) << i) & _esc_bm) { // TODO: ESC negative scaling for reverse thrust and reverse rotation float scaled = cmd_max * (hal.rcout->scale_esc_to_unity(_rco_conf[i].pulse) + 1.0) / 2.0; scaled = constrain_float(scaled, 0, cmd_max); esc_msg.cmd.push_back(static_cast(scaled)); } else { esc_msg.cmd.push_back(static_cast(0)); } k++; } esc_raw[_uavcan_i]->broadcast(esc_msg); } } } for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) { // mark as transmitted _rco_conf[i].active = false; } rc_out_sem_give(); } } } else { hal.scheduler->delay_microseconds(1000); } } uavcan::ISystemClock & AP_UAVCAN::get_system_clock() { return SystemClock::instance(); } uavcan::ICanDriver * AP_UAVCAN::get_can_driver() { if (_parent_can_mgr != nullptr) { if (_parent_can_mgr->is_initialized() == false) { return nullptr; } else { return _parent_can_mgr->get_driver(); } } return nullptr; } uavcan::Node<0> *AP_UAVCAN::get_node() { if (_node == nullptr && get_can_driver() != nullptr) { _node = new uavcan::Node<0>(*get_can_driver(), get_system_clock(), _node_allocator); } return _node; } void AP_UAVCAN::rco_set_safety_pwm(uint32_t chmask, uint16_t pulse_len) { for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) { if (chmask & (((uint32_t) 1) << i)) { _rco_conf[i].safety_pulse = pulse_len; } } } void AP_UAVCAN::rco_set_failsafe_pwm(uint32_t chmask, uint16_t pulse_len) { for (uint8_t i = 0; i < UAVCAN_RCO_NUMBER; i++) { if (chmask & (((uint32_t) 1) << i)) { _rco_conf[i].failsafe_pulse = pulse_len; } } } void AP_UAVCAN::rco_force_safety_on(void) { _rco_safety = true; } void AP_UAVCAN::rco_force_safety_off(void) { _rco_safety = false; } void AP_UAVCAN::rco_arm_actuators(bool arm) { _rco_armed = arm; } void AP_UAVCAN::rco_write(uint16_t pulse_len, uint8_t ch) { _rco_conf[ch].pulse = pulse_len; _rco_conf[ch].active = true; } uint8_t AP_UAVCAN::find_gps_without_listener(void) { for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) { if (_gps_listeners[i] == nullptr && _gps_nodes[i] != UINT8_MAX) { return _gps_nodes[i]; } } return UINT8_MAX; } uint8_t AP_UAVCAN::register_gps_listener(AP_GPS_Backend* new_listener, uint8_t preferred_channel) { uint8_t sel_place = UINT8_MAX, ret = 0; for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) { if (_gps_listeners[i] == nullptr) { sel_place = i; break; } } if (sel_place != UINT8_MAX) { if (preferred_channel != 0) { if (preferred_channel <= AP_UAVCAN_MAX_GPS_NODES) { _gps_listeners[sel_place] = new_listener; _gps_listener_to_node[sel_place] = preferred_channel - 1; _gps_node_taken[_gps_listener_to_node[sel_place]]++; ret = preferred_channel; debug_uavcan(2, "reg_GPS place:%d, chan: %d\n\r", sel_place, preferred_channel); } } else { for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) { if (_gps_node_taken[i] == 0) { _gps_listeners[sel_place] = new_listener; _gps_listener_to_node[sel_place] = i; _gps_node_taken[i]++; ret = i + 1; debug_uavcan(2, "reg_GPS place:%d, chan: %d\n\r", sel_place, i); break; } } } } return ret; } uint8_t AP_UAVCAN::register_gps_listener_to_node(AP_GPS_Backend* new_listener, uint8_t node) { uint8_t sel_place = UINT8_MAX, ret = 0; for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) { if (_gps_listeners[i] == nullptr) { sel_place = i; break; } } if (sel_place != UINT8_MAX) { for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) { if (_gps_nodes[i] == node) { _gps_listeners[sel_place] = new_listener; _gps_listener_to_node[sel_place] = i; _gps_node_taken[i]++; ret = i + 1; debug_uavcan(2, "reg_GPS place:%d, chan: %d\n\r", sel_place, i); break; } } } return ret; } void AP_UAVCAN::remove_gps_listener(AP_GPS_Backend* rem_listener) { // Check for all listeners and compare pointers for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) { if (_gps_listeners[i] == rem_listener) { _gps_listeners[i] = nullptr; // Also decrement usage counter and reset listening node if (_gps_node_taken[_gps_listener_to_node[i]] > 0) { _gps_node_taken[_gps_listener_to_node[i]]--; } _gps_listener_to_node[i] = UINT8_MAX; } } } AP_GPS::GPS_State *AP_UAVCAN::find_gps_node(uint8_t node) { // Check if such node is already defined for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) { if (_gps_nodes[i] == node) { return &_gps_node_state[i]; } } // If not - try to find free space for it for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) { if (_gps_nodes[i] == UINT8_MAX) { _gps_nodes[i] = node; return &_gps_node_state[i]; } } // If no space is left - return nullptr return nullptr; } void AP_UAVCAN::update_gps_state(uint8_t node) { // Go through all listeners of specified node and call their's update methods for (uint8_t i = 0; i < AP_UAVCAN_MAX_GPS_NODES; i++) { if (_gps_nodes[i] == node) { for (uint8_t j = 0; j < AP_UAVCAN_MAX_LISTENERS; j++) { if (_gps_listener_to_node[j] == i) { _gps_listeners[j]->handle_gnss_msg(_gps_node_state[i]); } } } } } uint8_t AP_UAVCAN::register_baro_listener(AP_Baro_Backend* new_listener, uint8_t preferred_channel) { uint8_t sel_place = UINT8_MAX, ret = 0; for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) { if (_baro_listeners[i] == nullptr) { sel_place = i; break; } } if (sel_place != UINT8_MAX) { if (preferred_channel != 0) { if (preferred_channel < AP_UAVCAN_MAX_BARO_NODES) { _baro_listeners[sel_place] = new_listener; _baro_listener_to_node[sel_place] = preferred_channel - 1; _baro_node_taken[_baro_listener_to_node[sel_place]]++; ret = preferred_channel; debug_uavcan(2, "reg_Baro place:%d, chan: %d\n\r", sel_place, preferred_channel); } } else { for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) { if (_baro_node_taken[i] == 0) { _baro_listeners[sel_place] = new_listener; _baro_listener_to_node[sel_place] = i; _baro_node_taken[i]++; ret = i + 1; debug_uavcan(2, "reg_BARO place:%d, chan: %d\n\r", sel_place, i); break; } } } } return ret; } uint8_t AP_UAVCAN::register_baro_listener_to_node(AP_Baro_Backend* new_listener, uint8_t node) { uint8_t sel_place = UINT8_MAX, ret = 0; for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) { if (_baro_listeners[i] == nullptr) { sel_place = i; break; } } if (sel_place != UINT8_MAX) { for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) { if (_baro_nodes[i] == node) { _baro_listeners[sel_place] = new_listener; _baro_listener_to_node[sel_place] = i; _baro_node_taken[i]++; ret = i + 1; debug_uavcan(2, "reg_BARO place:%d, chan: %d\n\r", sel_place, i); break; } } } return ret; } void AP_UAVCAN::remove_baro_listener(AP_Baro_Backend* rem_listener) { // Check for all listeners and compare pointers for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) { if (_baro_listeners[i] == rem_listener) { _baro_listeners[i] = nullptr; // Also decrement usage counter and reset listening node if (_baro_node_taken[_baro_listener_to_node[i]] > 0) { _baro_node_taken[_baro_listener_to_node[i]]--; } _baro_listener_to_node[i] = UINT8_MAX; } } } AP_UAVCAN::Baro_Info *AP_UAVCAN::find_baro_node(uint8_t node) { // Check if such node is already defined for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) { if (_baro_nodes[i] == node) { return &_baro_node_state[i]; } } // If not - try to find free space for it for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) { if (_baro_nodes[i] == UINT8_MAX) { _baro_nodes[i] = node; return &_baro_node_state[i]; } } // If no space is left - return nullptr return nullptr; } void AP_UAVCAN::update_baro_state(uint8_t node) { // Go through all listeners of specified node and call their's update methods for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) { if (_baro_nodes[i] == node) { for (uint8_t j = 0; j < AP_UAVCAN_MAX_LISTENERS; j++) { if (_baro_listener_to_node[j] == i) { _baro_listeners[j]->handle_baro_msg(_baro_node_state[i].pressure, _baro_node_state[i].temperature); } } } } } /* * Find discovered not taken baro node with smallest node ID */ uint8_t AP_UAVCAN::find_smallest_free_baro_node() { uint8_t ret = UINT8_MAX; for (uint8_t i = 0; i < AP_UAVCAN_MAX_BARO_NODES; i++) { if (_baro_node_taken[i] == 0) { ret = MIN(ret, _baro_nodes[i]); } } return ret; } uint8_t AP_UAVCAN::register_mag_listener(AP_Compass_Backend* new_listener, uint8_t preferred_channel) { uint8_t sel_place = UINT8_MAX, ret = 0; for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) { if (_mag_listeners[i] == nullptr) { sel_place = i; break; } } if (sel_place != UINT8_MAX) { if (preferred_channel != 0) { if (preferred_channel < AP_UAVCAN_MAX_MAG_NODES) { _mag_listeners[sel_place] = new_listener; _mag_listener_to_node[sel_place] = preferred_channel - 1; _mag_node_taken[_mag_listener_to_node[sel_place]]++; ret = preferred_channel; debug_uavcan(2, "reg_Compass place:%d, chan: %d\n\r", sel_place, preferred_channel); } } else { for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) { if (_mag_node_taken[i] == 0) { _mag_listeners[sel_place] = new_listener; _mag_listener_to_node[sel_place] = i; _mag_node_taken[i]++; ret = i + 1; debug_uavcan(2, "reg_MAG place:%d, chan: %d\n\r", sel_place, i); break; } } } } return ret; } uint8_t AP_UAVCAN::register_mag_listener_to_node(AP_Compass_Backend* new_listener, uint8_t node) { uint8_t sel_place = UINT8_MAX, ret = 0; for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) { if (_mag_listeners[i] == nullptr) { sel_place = i; break; } } if (sel_place != UINT8_MAX) { for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) { if (_mag_nodes[i] == node) { _mag_listeners[sel_place] = new_listener; _mag_listener_to_node[sel_place] = i; _mag_node_taken[i]++; ret = i + 1; debug_uavcan(2, "reg_MAG place:%d, chan: %d\n\r", sel_place, i); break; } } } return ret; } void AP_UAVCAN::remove_mag_listener(AP_Compass_Backend* rem_listener) { // Check for all listeners and compare pointers for (uint8_t i = 0; i < AP_UAVCAN_MAX_LISTENERS; i++) { if (_mag_listeners[i] == rem_listener) { _mag_listeners[i] = nullptr; // Also decrement usage counter and reset listening node if (_mag_node_taken[_mag_listener_to_node[i]] > 0) { _mag_node_taken[_mag_listener_to_node[i]]--; } _mag_listener_to_node[i] = UINT8_MAX; } } } AP_UAVCAN::Mag_Info *AP_UAVCAN::find_mag_node(uint8_t node) { // Check if such node is already defined for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) { if (_mag_nodes[i] == node) { return &_mag_node_state[i]; } } // If not - try to find free space for it for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) { if (_mag_nodes[i] == UINT8_MAX) { _mag_nodes[i] = node; return &_mag_node_state[i]; } } // If no space is left - return nullptr return nullptr; } /* * Find discovered not taken mag node with smallest node ID */ uint8_t AP_UAVCAN::find_smallest_free_mag_node() { uint8_t ret = UINT8_MAX; for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) { if (_mag_node_taken[i] == 0) { ret = MIN(ret, _mag_nodes[i]); } } return ret; } void AP_UAVCAN::update_mag_state(uint8_t node) { // Go through all listeners of specified node and call their's update methods for (uint8_t i = 0; i < AP_UAVCAN_MAX_MAG_NODES; i++) { if (_mag_nodes[i] == node) { for (uint8_t j = 0; j < AP_UAVCAN_MAX_LISTENERS; j++) { if (_mag_listener_to_node[j] == i) { _mag_listeners[j]->handle_mag_msg(_mag_node_state[i].mag_vector); } } } } } #endif // HAL_WITH_UAVCAN