#include "AP_Vehicle_config.h" #if AP_VEHICLE_ENABLED #include "AP_Vehicle.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS #include #include #endif #include #if HAL_WITH_IO_MCU #include extern AP_IOMCU iomcu; #endif #include #define SCHED_TASK(func, rate_hz, max_time_micros, prio) SCHED_TASK_CLASS(AP_Vehicle, &vehicle, func, rate_hz, max_time_micros, prio) /* 2nd group of parameters */ const AP_Param::GroupInfo AP_Vehicle::var_info[] = { #if HAL_RUNCAM_ENABLED // @Group: CAM_RC_ // @Path: ../AP_Camera/AP_RunCam.cpp AP_SUBGROUPINFO(runcam, "CAM_RC_", 1, AP_Vehicle, AP_RunCam), #endif #if HAL_GYROFFT_ENABLED // @Group: FFT_ // @Path: ../AP_GyroFFT/AP_GyroFFT.cpp AP_SUBGROUPINFO(gyro_fft, "FFT_", 2, AP_Vehicle, AP_GyroFFT), #endif #if HAL_VISUALODOM_ENABLED // @Group: VISO // @Path: ../AP_VisualOdom/AP_VisualOdom.cpp AP_SUBGROUPINFO(visual_odom, "VISO", 3, AP_Vehicle, AP_VisualOdom), #endif #if AP_VIDEOTX_ENABLED // @Group: VTX_ // @Path: ../AP_VideoTX/AP_VideoTX.cpp AP_SUBGROUPINFO(vtx, "VTX_", 4, AP_Vehicle, AP_VideoTX), #endif #if HAL_MSP_ENABLED // @Group: MSP // @Path: ../AP_MSP/AP_MSP.cpp AP_SUBGROUPINFO(msp, "MSP", 5, AP_Vehicle, AP_MSP), #endif #if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL // @Group: FRSKY_ // @Path: ../AP_Frsky_Telem/AP_Frsky_Parameters.cpp AP_SUBGROUPINFO(frsky_parameters, "FRSKY_", 6, AP_Vehicle, AP_Frsky_Parameters), #endif #if HAL_GENERATOR_ENABLED // @Group: GEN_ // @Path: ../AP_Generator/AP_Generator.cpp AP_SUBGROUPINFO(generator, "GEN_", 7, AP_Vehicle, AP_Generator), #endif #if HAL_EXTERNAL_AHRS_ENABLED // @Group: EAHRS // @Path: ../AP_ExternalAHRS/AP_ExternalAHRS.cpp AP_SUBGROUPINFO(externalAHRS, "EAHRS", 8, AP_Vehicle, AP_ExternalAHRS), #endif #if HAL_EFI_ENABLED // @Group: EFI // @Path: ../AP_EFI/AP_EFI.cpp AP_SUBGROUPINFO(efi, "EFI", 9, AP_Vehicle, AP_EFI), #endif #if AP_AIRSPEED_ENABLED // @Group: ARSPD // @Path: ../AP_Airspeed/AP_Airspeed.cpp AP_SUBGROUPINFO(airspeed, "ARSPD", 10, AP_Vehicle, AP_Airspeed), #endif // @Group: CUST_ROT // @Path: ../AP_CustomRotations/AP_CustomRotations.cpp AP_SUBGROUPINFO(custom_rotations, "CUST_ROT", 11, AP_Vehicle, AP_CustomRotations), #if HAL_WITH_ESC_TELEM // @Group: ESC_TLM // @Path: ../AP_ESC_Telem/AP_ESC_Telem.cpp AP_SUBGROUPINFO(esc_telem, "ESC_TLM", 12, AP_Vehicle, AP_ESC_Telem), #endif #if AP_AIS_ENABLED // @Group: AIS_ // @Path: ../AP_AIS/AP_AIS.cpp AP_SUBGROUPINFO(ais, "AIS_", 13, AP_Vehicle, AP_AIS), #endif #if AP_FENCE_ENABLED // @Group: FENCE_ // @Path: ../AC_Fence/AC_Fence.cpp AP_SUBGROUPINFO(fence, "FENCE_", 14, AP_Vehicle, AC_Fence), #endif #if AP_OPENDRONEID_ENABLED // @Group: DID_ // @Path: ../AP_OpenDroneID/AP_OpenDroneID.cpp AP_SUBGROUPINFO(opendroneid, "DID_", 15, AP_Vehicle, AP_OpenDroneID), #endif #if AP_TEMPERATURE_SENSOR_ENABLED // @Group: TEMP // @Path: ../AP_TemperatureSensor/AP_TemperatureSensor.cpp AP_SUBGROUPINFO(temperature_sensor, "TEMP", 16, AP_Vehicle, AP_TemperatureSensor), #endif #if HAL_NMEA_OUTPUT_ENABLED // @Group: NMEA_ // @Path: ../AP_NMEA_Output/AP_NMEA_Output.cpp AP_SUBGROUPINFO(nmea, "NMEA_", 17, AP_Vehicle, AP_NMEA_Output), #endif #if AP_DDS_ENABLED // @Group: DDS // @Path: ../AP_DDS/AP_DDS_Client.cpp AP_SUBGROUPPTR(dds_client, "DDS", 18, AP_Vehicle, AP_DDS_Client), #endif #if AP_KDECAN_ENABLED // @Group: KDE_ // @Path: ../AP_KDECAN/AP_KDECAN.cpp AP_SUBGROUPINFO(kdecan, "KDE_", 19, AP_Vehicle, AP_KDECAN), #endif #if APM_BUILD_COPTER_OR_HELI || APM_BUILD_TYPE(APM_BUILD_ArduPlane) || APM_BUILD_TYPE(APM_BUILD_Rover) // @Param: FLTMODE_GCSBLOCK // @DisplayName: Flight mode block from GCS // @Description: Bitmask of flight modes to disable for GCS selection. Mode can still be accessed via RC or failsafe. // @Bitmask{Copter}: 0:Stabilize // @Bitmask{Copter}: 1:Acro // @Bitmask{Copter}: 2:AltHold // @Bitmask{Copter}: 3:Auto // @Bitmask{Copter}: 4:Guided // @Bitmask{Copter}: 5:Loiter // @Bitmask{Copter}: 6:Circle // @Bitmask{Copter}: 7:Drift // @Bitmask{Copter}: 8:Sport // @Bitmask{Copter}: 9:Flip // @Bitmask{Copter}: 10:AutoTune // @Bitmask{Copter}: 11:PosHold // @Bitmask{Copter}: 12:Brake // @Bitmask{Copter}: 13:Throw // @Bitmask{Copter}: 14:Avoid_ADSB // @Bitmask{Copter}: 15:Guided_NoGPS // @Bitmask{Copter}: 16:Smart_RTL // @Bitmask{Copter}: 17:FlowHold // @Bitmask{Copter}: 18:Follow // @Bitmask{Copter}: 19:ZigZag // @Bitmask{Copter}: 20:SystemID // @Bitmask{Copter}: 21:Heli_Autorotate // @Bitmask{Copter}: 22:Auto RTL // @Bitmask{Copter}: 23:Turtle // @Bitmask{Plane}: 0:Manual // @Bitmask{Plane}: 1:Circle // @Bitmask{Plane}: 2:Stabilize // @Bitmask{Plane}: 3:Training // @Bitmask{Plane}: 4:ACRO // @Bitmask{Plane}: 5:FBWA // @Bitmask{Plane}: 6:FBWB // @Bitmask{Plane}: 7:CRUISE // @Bitmask{Plane}: 8:AUTOTUNE // @Bitmask{Plane}: 9:Auto // @Bitmask{Plane}: 10:Loiter // @Bitmask{Plane}: 11:Takeoff // @Bitmask{Plane}: 12:AVOID_ADSB // @Bitmask{Plane}: 13:Guided // @Bitmask{Plane}: 14:THERMAL // @Bitmask{Plane}: 15:QSTABILIZE // @Bitmask{Plane}: 16:QHOVER // @Bitmask{Plane}: 17:QLOITER // @Bitmask{Plane}: 18:QACRO // @Bitmask{Plane}: 19:QAUTOTUNE // @Bitmask{Rover}: 0:Manual // @Bitmask{Rover}: 1:Acro // @Bitmask{Rover}: 2:Steering // @Bitmask{Rover}: 3:Loiter // @Bitmask{Rover}: 4:Follow // @Bitmask{Rover}: 5:Simple // @Bitmask{Rover}: 6:Circle // @Bitmask{Rover}: 7:Auto // @Bitmask{Rover}: 8:RTL // @Bitmask{Rover}: 9:SmartRTL // @Bitmask{Rover}: 10:Guided // @Bitmask{Rover}: 11:Dock // @User: Standard AP_GROUPINFO("FLTMODE_GCSBLOCK", 20, AP_Vehicle, flight_mode_GCS_block, 0), #endif // APM_BUILD_COPTER_OR_HELI || APM_BUILD_TYPE(APM_BUILD_ArduPlane) || APM_BUILD_TYPE(APM_BUILD_Rover) #if AP_NETWORKING_ENABLED // @Group: NET_ // @Path: ../AP_Networking/AP_Networking.cpp AP_SUBGROUPINFO(networking, "NET_", 21, AP_Vehicle, AP_Networking), /* the NET_Pn_ parameters need to be in AP_Vehicle as otherwise we are too deep in the parameter tree */ #if AP_NETWORKING_NUM_PORTS > 0 // @Group: NET_P1_ // @Path: ../AP_Networking/AP_Networking_port.cpp AP_SUBGROUPINFO(networking.ports[0], "NET_P1_", 22, AP_Vehicle, AP_Networking::Port), #endif #if AP_NETWORKING_NUM_PORTS > 1 // @Group: NET_P2_ // @Path: ../AP_Networking/AP_Networking_port.cpp AP_SUBGROUPINFO(networking.ports[1], "NET_P2_", 23, AP_Vehicle, AP_Networking::Port), #endif #if AP_NETWORKING_NUM_PORTS > 2 // @Group: NET_P3_ // @Path: ../AP_Networking/AP_Networking_port.cpp AP_SUBGROUPINFO(networking.ports[2], "NET_P3_", 24, AP_Vehicle, AP_Networking::Port), #endif #if AP_NETWORKING_NUM_PORTS > 3 // @Group: NET_P4_ // @Path: ../AP_Networking/AP_Networking_port.cpp AP_SUBGROUPINFO(networking.ports[3], "NET_P4_", 25, AP_Vehicle, AP_Networking::Port), #endif #endif // AP_NETWORKING_ENABLED #if AP_FILTER_ENABLED // @Group: FILT // @Path: ../Filter/AP_Filter.cpp AP_SUBGROUPINFO(filters, "FILT", 26, AP_Vehicle, AP_Filters), #endif AP_GROUPEND }; // reference to the vehicle. using AP::vehicle() here does not work on clang #if APM_BUILD_TYPE(APM_BUILD_UNKNOWN) || APM_BUILD_TYPE(APM_BUILD_AP_Periph) AP_Vehicle& vehicle = *AP_Vehicle::get_singleton(); #else extern AP_Vehicle& vehicle; #endif /* setup is called when the sketch starts */ void AP_Vehicle::setup() { // load the default values of variables listed in var_info[] AP_Param::setup_sketch_defaults(); // initialise serial port serial_manager.init_console(); DEV_PRINTF("\n\nInit %s" "\n\nFree RAM: %u\n", AP::fwversion().fw_string, (unsigned)hal.util->available_memory()); #if AP_CHECK_FIRMWARE_ENABLED check_firmware_print(); #endif // validate the static parameter table, then load persistent // values from storage: AP_Param::check_var_info(); load_parameters(); #if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS if (AP_BoardConfig::get_sdcard_slowdown() != 0) { // user wants the SDcard slower, we need to remount sdcard_stop(); sdcard_retry(); } #endif // initialise the main loop scheduler const AP_Scheduler::Task *tasks; uint8_t task_count; uint32_t log_bit; get_scheduler_tasks(tasks, task_count, log_bit); AP::scheduler().init(tasks, task_count, log_bit); // time per loop - this gets updated in the main loop() based on // actual loop rate G_Dt = scheduler.get_loop_period_s(); // this is here for Plane; its failsafe_check method requires the // RC channels to be set as early as possible for maximum // survivability. set_control_channels(); #if HAL_GCS_ENABLED // initialise serial manager as early as sensible to get // diagnostic output during boot process. We have to initialise // the GCS singleton first as it sets the global mavlink system ID // which may get used very early on. gcs().init(); #endif // initialise serial ports serial_manager.init(); #if HAL_GCS_ENABLED gcs().setup_console(); #endif #if AP_NETWORKING_ENABLED networking.init(); #endif // Register scheduler_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(scheduler_delay_callback, 5); #if HAL_MSP_ENABLED // call MSP init before init_ardupilot to allow for MSP sensors msp.init(); #endif #if HAL_EXTERNAL_AHRS_ENABLED // call externalAHRS init before init_ardupilot to allow for external sensors externalAHRS.init(); #endif #if HAL_GENERATOR_ENABLED generator.init(); #endif // init_ardupilot is where the vehicle does most of its initialisation. init_ardupilot(); #if AP_AIRSPEED_ENABLED airspeed.init(); if (airspeed.enabled()) { airspeed.calibrate(true); } #if APM_BUILD_TYPE(APM_BUILD_ArduPlane) else { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "No airspeed sensor"); } #endif #endif // AP_AIRSPEED_ENABLED #if !APM_BUILD_TYPE(APM_BUILD_Replay) SRV_Channels::init(); #endif // gyro FFT needs to be initialized really late #if HAL_GYROFFT_ENABLED gyro_fft.init(AP::scheduler().get_loop_rate_hz()); #endif #if HAL_RUNCAM_ENABLED runcam.init(); #endif #if HAL_HOTT_TELEM_ENABLED hott_telem.init(); #endif #if HAL_VISUALODOM_ENABLED // init library used for visual position estimation visual_odom.init(); #endif #if AP_VIDEOTX_ENABLED vtx.init(); #endif #if AP_SMARTAUDIO_ENABLED smartaudio.init(); #endif #if AP_TRAMP_ENABLED tramp.init(); #endif #if AP_PARAM_KEY_DUMP AP_Param::show_all(hal.console, true); #endif send_watchdog_reset_statustext(); #if AP_OPENDRONEID_ENABLED opendroneid.init(); #endif // init EFI monitoring #if HAL_EFI_ENABLED efi.init(); #endif #if AP_TEMPERATURE_SENSOR_ENABLED temperature_sensor.init(); #endif #if AP_KDECAN_ENABLED kdecan.init(); #endif #if AP_AIS_ENABLED ais.init(); #endif #if HAL_NMEA_OUTPUT_ENABLED nmea.init(); #endif #if AP_FENCE_ENABLED fence.init(); #endif custom_rotations.init(); #if AP_FILTER_ENABLED filters.init(); #endif #if HAL_WITH_ESC_TELEM && HAL_GYROFFT_ENABLED for (uint8_t i = 0; iget_output_mode_banner(banner_msg, sizeof(banner_msg))) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "%s", banner_msg); } } const uint32_t new_internal_errors = AP::internalerror().errors(); if(_last_internal_errors != new_internal_errors) { AP::logger().Write_Error(LogErrorSubsystem::INTERNAL_ERROR, LogErrorCode::INTERNAL_ERRORS_DETECTED); GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "Internal Errors 0x%x", (unsigned)new_internal_errors); _last_internal_errors = new_internal_errors; } } /* scheduler table - all regular tasks apart from the fast_loop() should be listed here. All entries in this table must be ordered by priority. This table is interleaved with the table presnet in each of the vehicles to determine the order in which tasks are run. Convenience methods SCHED_TASK and SCHED_TASK_CLASS are provided to build entries in this structure: SCHED_TASK arguments: - name of static function to call - rate (in Hertz) at which the function should be called - expected time (in MicroSeconds) that the function should take to run - priority (0 through 255, lower number meaning higher priority) SCHED_TASK_CLASS arguments: - class name of method to be called - instance on which to call the method - method to call on that instance - rate (in Hertz) at which the method should be called - expected time (in MicroSeconds) that the method should take to run - priority (0 through 255, lower number meaning higher priority) */ const AP_Scheduler::Task AP_Vehicle::scheduler_tasks[] = { #if HAL_GYROFFT_ENABLED FAST_TASK_CLASS(AP_GyroFFT, &vehicle.gyro_fft, sample_gyros), #endif #if AP_AIRSPEED_ENABLED SCHED_TASK_CLASS(AP_Airspeed, &vehicle.airspeed, update, 10, 100, 41), // NOTE: the priority number here should be right before Plane's calc_airspeed_errors #endif #if COMPASS_CAL_ENABLED SCHED_TASK_CLASS(Compass, &vehicle.compass, cal_update, 100, 200, 75), #endif SCHED_TASK_CLASS(AP_Notify, &vehicle.notify, update, 50, 300, 78), #if HAL_NMEA_OUTPUT_ENABLED SCHED_TASK_CLASS(AP_NMEA_Output, &vehicle.nmea, update, 50, 50, 180), #endif #if HAL_RUNCAM_ENABLED SCHED_TASK_CLASS(AP_RunCam, &vehicle.runcam, update, 50, 50, 200), #endif #if HAL_GYROFFT_ENABLED SCHED_TASK_CLASS(AP_GyroFFT, &vehicle.gyro_fft, update, 400, 50, 205), SCHED_TASK_CLASS(AP_GyroFFT, &vehicle.gyro_fft, update_parameters, 1, 50, 210), #endif SCHED_TASK(update_dynamic_notch_at_specified_rate, LOOP_RATE, 200, 215), #if AP_VIDEOTX_ENABLED SCHED_TASK_CLASS(AP_VideoTX, &vehicle.vtx, update, 2, 100, 220), #endif #if AP_TRAMP_ENABLED SCHED_TASK_CLASS(AP_Tramp, &vehicle.tramp, update, 50, 50, 225), #endif SCHED_TASK(send_watchdog_reset_statustext, 0.1, 20, 225), #if HAL_WITH_ESC_TELEM SCHED_TASK_CLASS(AP_ESC_Telem, &vehicle.esc_telem, update, 100, 50, 230), #endif #if HAL_GENERATOR_ENABLED SCHED_TASK_CLASS(AP_Generator, &vehicle.generator, update, 10, 50, 235), #endif #if AP_OPENDRONEID_ENABLED SCHED_TASK_CLASS(AP_OpenDroneID, &vehicle.opendroneid, update, 10, 50, 236), #endif #if AP_NETWORKING_ENABLED SCHED_TASK_CLASS(AP_Networking, &vehicle.networking, update, 10, 50, 238), #endif #if OSD_ENABLED SCHED_TASK(publish_osd_info, 1, 10, 240), #endif #if AP_TEMPERATURE_SENSOR_ENABLED SCHED_TASK_CLASS(AP_TemperatureSensor, &vehicle.temperature_sensor, update, 5, 50, 242), #endif #if HAL_INS_ACCELCAL_ENABLED SCHED_TASK(accel_cal_update, 10, 100, 245), #endif #if AP_FENCE_ENABLED SCHED_TASK_CLASS(AC_Fence, &vehicle.fence, update, 10, 100, 248), #endif #if AP_AIS_ENABLED SCHED_TASK_CLASS(AP_AIS, &vehicle.ais, update, 5, 100, 249), #endif #if HAL_EFI_ENABLED SCHED_TASK_CLASS(AP_EFI, &vehicle.efi, update, 50, 200, 250), #endif SCHED_TASK(one_Hz_update, 1, 100, 252), #if HAL_WITH_ESC_TELEM && HAL_GYROFFT_ENABLED SCHED_TASK(check_motor_noise, 5, 50, 252), #endif #if AP_FILTER_ENABLED SCHED_TASK_CLASS(AP_Filters, &vehicle.filters, update, 1, 100, 252), #endif SCHED_TASK(update_arming, 1, 50, 253), }; void AP_Vehicle::get_common_scheduler_tasks(const AP_Scheduler::Task*& tasks, uint8_t& num_tasks) { tasks = scheduler_tasks; num_tasks = ARRAY_SIZE(scheduler_tasks); } /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ void AP_Vehicle::scheduler_delay_callback() { #if APM_BUILD_TYPE(APM_BUILD_Replay) // compass.init() delays, so we end up here. return; #endif static uint32_t last_1hz, last_50hz, last_5s; AP_Logger &logger = AP::logger(); // don't allow potentially expensive logging calls: logger.EnableWrites(false); const uint32_t tnow = AP_HAL::millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; GCS_SEND_MESSAGE(MSG_HEARTBEAT); GCS_SEND_MESSAGE(MSG_SYS_STATUS); } if (tnow - last_50hz > 20) { last_50hz = tnow; #if HAL_GCS_ENABLED gcs().update_receive(); gcs().update_send(); #endif _singleton->notify.update(); } if (tnow - last_5s > 5000) { last_5s = tnow; if (AP_BoardConfig::in_config_error()) { GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "Config Error: fix problem then reboot"); } else { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Initialising ArduPilot"); } } logger.EnableWrites(true); } // if there's been a watchdog reset, notify the world via a statustext: void AP_Vehicle::send_watchdog_reset_statustext() { if (!hal.util->was_watchdog_reset()) { return; } const AP_HAL::Util::PersistentData &pd = hal.util->last_persistent_data; (void)pd; // in case !HAL_GCS_ENABLED GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "WDG: T%d SL%u FL%u FT%u FA%x FTP%u FLR%x FICSR%u MM%u MC%u IE%u IEC%u TN:%.4s", pd.scheduler_task, pd.semaphore_line, pd.fault_line, pd.fault_type, (unsigned)pd.fault_addr, pd.fault_thd_prio, (unsigned)pd.fault_lr, (unsigned)pd.fault_icsr, pd.last_mavlink_msgid, pd.last_mavlink_cmd, (unsigned)pd.internal_errors, (unsigned)pd.internal_error_count, pd.thread_name4 ); } bool AP_Vehicle::is_crashed() const { if (AP::arming().is_armed()) { return false; } return AP::arming().last_disarm_method() == AP_Arming::Method::CRASH; } // update the harmonic notch filter for throttle based notch void AP_Vehicle::update_throttle_notch(AP_InertialSensor::HarmonicNotch ¬ch) { #if APM_BUILD_TYPE(APM_BUILD_ArduPlane)||APM_BUILD_COPTER_OR_HELI||APM_BUILD_TYPE(APM_BUILD_Rover) const float ref_freq = notch.params.center_freq_hz(); const float ref = notch.params.reference(); const float min_ratio = notch.params.freq_min_ratio(); #if APM_BUILD_TYPE(APM_BUILD_ArduPlane)||APM_BUILD_COPTER_OR_HELI const AP_Motors* motors = AP::motors(); const float motors_throttle = motors != nullptr ? MAX(0,motors->get_throttle_out()) : 0; #else // APM_BUILD_Rover const AP_MotorsUGV *motors = AP::motors_ugv(); const float motors_throttle = motors != nullptr ? abs(motors->get_throttle() / 100.0f) : 0; #endif float throttle_freq = ref_freq * MAX(min_ratio, sqrtf(motors_throttle / ref)); notch.update_freq_hz(throttle_freq); #endif } // update the harmonic notch filter center frequency dynamically void AP_Vehicle::update_dynamic_notch(AP_InertialSensor::HarmonicNotch ¬ch) { #if APM_BUILD_TYPE(APM_BUILD_ArduPlane)||APM_BUILD_COPTER_OR_HELI||APM_BUILD_TYPE(APM_BUILD_Rover) if (!notch.params.enabled()) { return; } const float ref_freq = notch.params.center_freq_hz(); const float ref = notch.params.reference(); if (is_zero(ref)) { notch.update_freq_hz(ref_freq); return; } #if APM_BUILD_TYPE(APM_BUILD_ArduPlane)||APM_BUILD_COPTER_OR_HELI const AP_Motors* motors = AP::motors(); if (motors != nullptr && motors->get_spool_state() == AP_Motors::SpoolState::SHUT_DOWN) { notch.set_inactive(true); } else { notch.set_inactive(false); } #else // APM_BUILD_Rover: keep notch active notch.set_inactive(false); #endif switch (notch.params.tracking_mode()) { case HarmonicNotchDynamicMode::UpdateThrottle: // throttle based tracking // set the harmonic notch filter frequency approximately scaled on motor rpm implied by throttle update_throttle_notch(notch); break; #if AP_RPM_ENABLED case HarmonicNotchDynamicMode::UpdateRPM: // rpm sensor based tracking case HarmonicNotchDynamicMode::UpdateRPM2: { const auto *rpm_sensor = AP::rpm(); uint8_t sensor = (notch.params.tracking_mode()==HarmonicNotchDynamicMode::UpdateRPM?0:1); float rpm; if (rpm_sensor != nullptr && rpm_sensor->get_rpm(sensor, rpm)) { // set the harmonic notch filter frequency from the main rotor rpm notch.update_freq_hz(MAX(ref_freq * notch.params.freq_min_ratio(), rpm * ref * (1.0/60))); } else { notch.update_freq_hz(ref_freq); } break; } #endif // AP_RPM_ENABLED #if HAL_WITH_ESC_TELEM case HarmonicNotchDynamicMode::UpdateBLHeli: // BLHeli based tracking // set the harmonic notch filter frequency scaled on measured frequency if (notch.params.hasOption(HarmonicNotchFilterParams::Options::DynamicHarmonic)) { float notches[INS_MAX_NOTCHES]; // ESC telemetry will return 0 for missing data, but only after 1s const uint8_t num_notches = AP::esc_telem().get_motor_frequencies_hz(INS_MAX_NOTCHES, notches); for (uint8_t i = 0; i < num_notches; i++) { if (!is_zero(notches[i])) { notches[i] = MAX(ref_freq, notches[i]); } } if (num_notches > 0) { notch.update_frequencies_hz(num_notches, notches); } else { // throttle fallback update_throttle_notch(notch); } } else { notch.update_freq_hz(MAX(ref_freq, AP::esc_telem().get_average_motor_frequency_hz() * ref)); } break; #endif #if HAL_GYROFFT_ENABLED case HarmonicNotchDynamicMode::UpdateGyroFFT: // FFT based tracking // set the harmonic notch filter frequency scaled on measured frequency if (notch.params.hasOption(HarmonicNotchFilterParams::Options::DynamicHarmonic)) { float notches[INS_MAX_NOTCHES]; const uint8_t peaks = gyro_fft.get_weighted_noise_center_frequencies_hz(notch.num_dynamic_notches, notches); if (peaks > 0) { for (uint8_t i = 0; i < peaks; i++) { notches[i] = MAX(ref_freq, notches[i]); } notch.update_frequencies_hz(peaks, notches); } else { // since FFT can be used post-filter it is better to disable the notch when there is no data notch.set_inactive(true); } } else { float center_freq = gyro_fft.get_weighted_noise_center_freq_hz(); if (!is_zero(center_freq)) { notch.update_freq_hz(MAX(ref_freq, center_freq)); } else { // since FFT can be used post-filter it is better to disable the notch when there is no data notch.set_inactive(true); } } break; #endif case HarmonicNotchDynamicMode::Fixed: // static default: notch.update_freq_hz(ref_freq); break; } #endif // APM_BUILD_TYPE(APM_BUILD_ArduPlane)||APM_BUILD_COPTER_OR_HELI||APM_BUILD_TYPE(APM_BUILD_Rover) } // run notch update at either loop rate or 200Hz void AP_Vehicle::update_dynamic_notch_at_specified_rate() { for (auto ¬ch : ins.harmonic_notches) { if (notch.params.hasOption(HarmonicNotchFilterParams::Options::LoopRateUpdate)) { update_dynamic_notch(notch); } else { // decimated update at 200Hz const uint32_t now = AP_HAL::millis(); const uint8_t i = ¬ch - &ins.harmonic_notches[0]; if (now - _last_notch_update_ms[i] > 5) { _last_notch_update_ms[i] = now; update_dynamic_notch(notch); } } } } void AP_Vehicle::notify_no_such_mode(uint8_t mode_number) { GCS_SEND_TEXT(MAV_SEVERITY_WARNING,"No such mode %u", mode_number); AP::logger().Write_Error(LogErrorSubsystem::FLIGHT_MODE, LogErrorCode(mode_number)); } // reboot the vehicle in an orderly manner, doing various cleanups and // flashing LEDs as appropriate void AP_Vehicle::reboot(bool hold_in_bootloader) { if (should_zero_rc_outputs_on_reboot()) { SRV_Channels::zero_rc_outputs(); } // Notify might want to blink some LEDs: AP_Notify::flags.firmware_update = 1; notify.update(); // force safety on hal.rcout->force_safety_on(); // flush pending parameter writes AP_Param::flush(); // do not process incoming mavlink messages while we delay: hal.scheduler->register_delay_callback(nullptr, 5); #if CONFIG_HAL_BOARD == HAL_BOARD_SITL // need to ensure the ack goes out: hal.serial(0)->flush(); #endif // delay to give the ACK a chance to get out, the LEDs to flash, // the IO board safety to be forced on, the parameters to flush, ... hal.scheduler->delay(200); #if HAL_WITH_IO_MCU iomcu.soft_reboot(); #endif hal.scheduler->reboot(hold_in_bootloader); } #if OSD_ENABLED void AP_Vehicle::publish_osd_info() { AP_Mission *mission = AP::mission(); if (mission == nullptr) { return; } AP_OSD *osd = AP::osd(); if (osd == nullptr) { return; } AP_OSD::NavInfo nav_info; if(!get_wp_distance_m(nav_info.wp_distance)) { return; } float wp_bearing_deg; if (!get_wp_bearing_deg(wp_bearing_deg)) { return; } nav_info.wp_bearing = (int32_t)wp_bearing_deg * 100; // OSD expects cd if (!get_wp_crosstrack_error_m(nav_info.wp_xtrack_error)) { return; } nav_info.wp_number = mission->get_current_nav_index(); osd->set_nav_info(nav_info); } #endif void AP_Vehicle::get_osd_roll_pitch_rad(float &roll, float &pitch) const { roll = ahrs.roll; pitch = ahrs.pitch; } #if HAL_INS_ACCELCAL_ENABLED #ifndef HAL_CAL_ALWAYS_REBOOT // allow for forced reboot after accelcal #define HAL_CAL_ALWAYS_REBOOT 0 #endif /* update accel cal */ void AP_Vehicle::accel_cal_update() { if (hal.util->get_soft_armed()) { return; } ins.acal_update(); // check if new trim values, and set them Vector3f trim_rad; if (ins.get_new_trim(trim_rad)) { ahrs.set_trim(trim_rad); } #if HAL_CAL_ALWAYS_REBOOT if (ins.accel_cal_requires_reboot() && !hal.util->get_soft_armed()) { hal.scheduler->delay(1000); hal.scheduler->reboot(false); } #endif } #endif // HAL_INS_ACCELCAL_ENABLED // call the arming library's update function void AP_Vehicle::update_arming() { AP::arming().update(); } /* one Hz checks common to all vehicles */ void AP_Vehicle::one_Hz_update(void) { one_Hz_counter++; /* every 10s check if using a 2M firmware on a 1M board */ if (one_Hz_counter % 10U == 0) { #if defined(BOARD_CHECK_F427_USE_1M) && (BOARD_FLASH_SIZE>1024) if (!hal.util->get_soft_armed() && check_limit_flash_1M()) { GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, BOARD_CHECK_F427_USE_1M); } #endif } /* every 30s check if using a 1M firmware on a 2M board */ if (one_Hz_counter % 30U == 0) { #if defined(BOARD_CHECK_F427_USE_1M) && (BOARD_FLASH_SIZE<=1024) if (!hal.util->get_soft_armed() && !check_limit_flash_1M()) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, BOARD_CHECK_F427_USE_2M); } #endif } #if AP_SCRIPTING_ENABLED AP_Scripting *scripting = AP_Scripting::get_singleton(); if (scripting != nullptr) { scripting->update(); } #endif } void AP_Vehicle::check_motor_noise() { #if HAL_GYROFFT_ENABLED && HAL_WITH_ESC_TELEM if (!hal.util->get_soft_armed() || !gyro_fft.check_esc_noise() || !gyro_fft.using_post_filter_samples() || ins.has_fft_notch()) { return; } float esc_data[ESC_TELEM_MAX_ESCS]; const uint8_t numf = AP::esc_telem().get_motor_frequencies_hz(ESC_TELEM_MAX_ESCS, esc_data); bool output_error = false; for (uint8_t i = 0; i 40.0f && AP_HAL::millis() - last_motor_noise_ms > 5000) { GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Noise %.fdB on motor %u at %.fHz", energy, i+1, esc_data[i]); output_error = true; } } if (output_error) { last_motor_noise_ms = AP_HAL::millis(); } #endif } #if AP_DDS_ENABLED bool AP_Vehicle::init_dds_client() { dds_client = new AP_DDS_Client(); if (dds_client == nullptr) { return false; } return dds_client->start(); } #endif // AP_DDS_ENABLED // Check if this mode can be entered from the GCS #if APM_BUILD_COPTER_OR_HELI || APM_BUILD_TYPE(APM_BUILD_ArduPlane) || APM_BUILD_TYPE(APM_BUILD_Rover) bool AP_Vehicle::block_GCS_mode_change(uint8_t mode_num, const uint8_t *mode_list, uint8_t mode_list_length) const { if (mode_list == nullptr) { return false; } for (uint8_t i = 0; i < mode_list_length; i++) { // Find index of mode if (mode_list[i] == mode_num) { const uint32_t mask = 1U << i; return (uint32_t(flight_mode_GCS_block) & mask) != 0; } } return false; } #endif AP_Vehicle *AP_Vehicle::_singleton = nullptr; AP_Vehicle *AP_Vehicle::get_singleton() { return _singleton; } namespace AP { AP_Vehicle *vehicle() { return AP_Vehicle::get_singleton(); } }; #endif // AP_VEHICLE_ENABLED