#include #include "AP_InertialSensor.h" #include "AP_InertialSensor_Backend.h" #include #if AP_MODULE_SUPPORTED #include #include #endif #define SENSOR_RATE_DEBUG 0 const extern AP_HAL::HAL& hal; AP_InertialSensor_Backend::AP_InertialSensor_Backend(AP_InertialSensor &imu) : _imu(imu) { } /* notify of a FIFO reset so we don't use bad data to update observed sensor rate */ void AP_InertialSensor_Backend::notify_accel_fifo_reset(uint8_t instance) { _imu._sample_accel_count[instance] = 0; _imu._sample_accel_start_us[instance] = 0; } /* notify of a FIFO reset so we don't use bad data to update observed sensor rate */ void AP_InertialSensor_Backend::notify_gyro_fifo_reset(uint8_t instance) { _imu._sample_gyro_count[instance] = 0; _imu._sample_gyro_start_us[instance] = 0; } // set the amount of oversamping a accel is doing void AP_InertialSensor_Backend::_set_accel_oversampling(uint8_t instance, uint8_t n) { _imu._accel_over_sampling[instance] = n; } // set the amount of oversamping a gyro is doing void AP_InertialSensor_Backend::_set_gyro_oversampling(uint8_t instance, uint8_t n) { _imu._gyro_over_sampling[instance] = n; } /* update the sensor rate for FIFO sensors FIFO sensors produce samples at a fixed rate, but the clock in the sensor may vary slightly from the system clock. This slowly adjusts the rate to the observed rate */ void AP_InertialSensor_Backend::_update_sensor_rate(uint16_t &count, uint32_t &start_us, float &rate_hz) const { uint32_t now = AP_HAL::micros(); if (start_us == 0) { count = 0; start_us = now; } else { count++; if (now - start_us > 1000000UL) { float observed_rate_hz = count * 1.0e6 / (now - start_us); #if SENSOR_RATE_DEBUG printf("RATE: %.1f should be %.1f\n", observed_rate_hz, rate_hz); #endif float filter_constant = 0.98; float upper_limit = 1.05; float lower_limit = 0.95; if (AP_HAL::millis() < 30000) { // converge quickly for first 30s, then more slowly filter_constant = 0.8; upper_limit = 2.0; lower_limit = 0.5; } observed_rate_hz = constrain_float(observed_rate_hz, rate_hz*lower_limit, rate_hz*upper_limit); rate_hz = filter_constant * rate_hz + (1-filter_constant) * observed_rate_hz; count = 0; start_us = now; } } } void AP_InertialSensor_Backend::_rotate_and_correct_accel(uint8_t instance, Vector3f &accel) { /* accel calibration is always done in sensor frame with this version of the code. That means we apply the rotation after the offsets and scaling. */ // rotate for sensor orientation accel.rotate(_imu._accel_orientation[instance]); // apply offsets accel -= _imu._accel_offset[instance]; // apply scaling const Vector3f &accel_scale = _imu._accel_scale[instance].get(); accel.x *= accel_scale.x; accel.y *= accel_scale.y; accel.z *= accel_scale.z; // rotate to body frame if (_imu._board_orientation == ROTATION_CUSTOM && _imu._custom_rotation) { accel = *_imu._custom_rotation * accel; } else { accel.rotate(_imu._board_orientation); } } void AP_InertialSensor_Backend::_rotate_and_correct_gyro(uint8_t instance, Vector3f &gyro) { // rotate for sensor orientation gyro.rotate(_imu._gyro_orientation[instance]); // gyro calibration is always assumed to have been done in sensor frame gyro -= _imu._gyro_offset[instance]; if (_imu._board_orientation == ROTATION_CUSTOM && _imu._custom_rotation) { gyro = *_imu._custom_rotation * gyro; } else { gyro.rotate(_imu._board_orientation); } } /* rotate gyro vector and add the gyro offset */ void AP_InertialSensor_Backend::_publish_gyro(uint8_t instance, const Vector3f &gyro) { _imu._gyro[instance] = gyro; _imu._gyro_healthy[instance] = true; // publish delta angle _imu._delta_angle[instance] = _imu._delta_angle_acc[instance]; _imu._delta_angle_dt[instance] = _imu._delta_angle_acc_dt[instance]; _imu._delta_angle_valid[instance] = true; } void AP_InertialSensor_Backend::_notify_new_gyro_raw_sample(uint8_t instance, const Vector3f &gyro, uint64_t sample_us) { float dt; _update_sensor_rate(_imu._sample_gyro_count[instance], _imu._sample_gyro_start_us[instance], _imu._gyro_raw_sample_rates[instance]); /* we have two classes of sensors. FIFO based sensors produce data at a very predictable overall rate, but the data comes in bunches, so we use the provided sample rate for deltaT. Non-FIFO sensors don't bunch up samples, but also tend to vary in actual rate, so we use the provided sample_us to get the deltaT. The difference between the two is whether sample_us is provided. */ if (sample_us != 0 && _imu._gyro_last_sample_us[instance] != 0) { dt = (sample_us - _imu._gyro_last_sample_us[instance]) * 1.0e-6; } else { // don't accept below 100Hz if (_imu._gyro_raw_sample_rates[instance] < 100) { return; } dt = 1.0f / _imu._gyro_raw_sample_rates[instance]; } _imu._gyro_last_sample_us[instance] = sample_us; #if AP_MODULE_SUPPORTED // call gyro_sample hook if any AP_Module::call_hook_gyro_sample(instance, dt, gyro); #endif // push gyros if optical flow present if (hal.opticalflow) hal.opticalflow->push_gyro(gyro.x, gyro.y, dt); // compute delta angle Vector3f delta_angle = (gyro + _imu._last_raw_gyro[instance]) * 0.5f * dt; // compute coning correction // see page 26 of: // Tian et al (2010) Three-loop Integration of GPS and Strapdown INS with Coning and Sculling Compensation // Available: http://www.sage.unsw.edu.au/snap/publications/tian_etal2010b.pdf // see also examples/coning.py Vector3f delta_coning = (_imu._delta_angle_acc[instance] + _imu._last_delta_angle[instance] * (1.0f / 6.0f)); delta_coning = delta_coning % delta_angle; delta_coning *= 0.5f; { WITH_SEMAPHORE(_sem); // integrate delta angle accumulator // the angles and coning corrections are accumulated separately in the // referenced paper, but in simulation little difference was found between // integrating together and integrating separately (see examples/coning.py) _imu._delta_angle_acc[instance] += delta_angle + delta_coning; _imu._delta_angle_acc_dt[instance] += dt; // save previous delta angle for coning correction _imu._last_delta_angle[instance] = delta_angle; _imu._last_raw_gyro[instance] = gyro; _imu._gyro_filtered[instance] = _imu._gyro_filter[instance].apply(gyro); if (_imu._gyro_filtered[instance].is_nan() || _imu._gyro_filtered[instance].is_inf()) { _imu._gyro_filter[instance].reset(); } _imu._new_gyro_data[instance] = true; } log_gyro_raw(instance, sample_us, gyro); } void AP_InertialSensor_Backend::log_gyro_raw(uint8_t instance, const uint64_t sample_us, const Vector3f &gyro) { DataFlash_Class *dataflash = DataFlash_Class::instance(); if (dataflash == nullptr) { // should not have been called return; } if (should_log_imu_raw()) { uint64_t now = AP_HAL::micros64(); struct log_GYRO pkt = { LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GYR1_MSG+instance)), time_us : now, sample_us : sample_us?sample_us:now, GyrX : gyro.x, GyrY : gyro.y, GyrZ : gyro.z }; dataflash->WriteBlock(&pkt, sizeof(pkt)); } else { if (!_imu.batchsampler.doing_sensor_rate_logging()) { _imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_GYRO, sample_us, gyro); } } } /* rotate accel vector, scale and add the accel offset */ void AP_InertialSensor_Backend::_publish_accel(uint8_t instance, const Vector3f &accel) { _imu._accel[instance] = accel; _imu._accel_healthy[instance] = true; // publish delta velocity _imu._delta_velocity[instance] = _imu._delta_velocity_acc[instance]; _imu._delta_velocity_dt[instance] = _imu._delta_velocity_acc_dt[instance]; _imu._delta_velocity_valid[instance] = true; if (_imu._accel_calibrator != nullptr && _imu._accel_calibrator[instance].get_status() == ACCEL_CAL_COLLECTING_SAMPLE) { Vector3f cal_sample = _imu._delta_velocity[instance]; //remove rotation cal_sample.rotate_inverse(_imu._board_orientation); // remove scale factors const Vector3f &accel_scale = _imu._accel_scale[instance].get(); cal_sample.x /= accel_scale.x; cal_sample.y /= accel_scale.y; cal_sample.z /= accel_scale.z; //remove offsets cal_sample += _imu._accel_offset[instance].get() * _imu._delta_velocity_dt[instance] ; _imu._accel_calibrator[instance].new_sample(cal_sample, _imu._delta_velocity_dt[instance]); } } void AP_InertialSensor_Backend::_notify_new_accel_raw_sample(uint8_t instance, const Vector3f &accel, uint64_t sample_us, bool fsync_set) { float dt; _update_sensor_rate(_imu._sample_accel_count[instance], _imu._sample_accel_start_us[instance], _imu._accel_raw_sample_rates[instance]); /* we have two classes of sensors. FIFO based sensors produce data at a very predictable overall rate, but the data comes in bunches, so we use the provided sample rate for deltaT. Non-FIFO sensors don't bunch up samples, but also tend to vary in actual rate, so we use the provided sample_us to get the deltaT. The difference between the two is whether sample_us is provided. */ if (sample_us != 0 && _imu._accel_last_sample_us[instance] != 0) { dt = (sample_us - _imu._accel_last_sample_us[instance]) * 1.0e-6; } else { // don't accept below 100Hz if (_imu._accel_raw_sample_rates[instance] < 100) { return; } dt = 1.0f / _imu._accel_raw_sample_rates[instance]; } _imu._accel_last_sample_us[instance] = sample_us; #if AP_MODULE_SUPPORTED // call accel_sample hook if any AP_Module::call_hook_accel_sample(instance, dt, accel, fsync_set); #endif _imu.calc_vibration_and_clipping(instance, accel, dt); { WITH_SEMAPHORE(_sem); // delta velocity _imu._delta_velocity_acc[instance] += accel * dt; _imu._delta_velocity_acc_dt[instance] += dt; _imu._accel_filtered[instance] = _imu._accel_filter[instance].apply(accel); if (_imu._accel_filtered[instance].is_nan() || _imu._accel_filtered[instance].is_inf()) { _imu._accel_filter[instance].reset(); } _imu.set_accel_peak_hold(instance, _imu._accel_filtered[instance]); _imu._new_accel_data[instance] = true; } log_accel_raw(instance, sample_us, accel); } void AP_InertialSensor_Backend::_notify_new_accel_sensor_rate_sample(uint8_t instance, const Vector3f &accel) { if (!_imu.batchsampler.doing_sensor_rate_logging()) { return; } _imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_ACCEL, AP_HAL::micros64(), accel); } void AP_InertialSensor_Backend::_notify_new_gyro_sensor_rate_sample(uint8_t instance, const Vector3f &gyro) { if (!_imu.batchsampler.doing_sensor_rate_logging()) { return; } _imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_GYRO, AP_HAL::micros64(), gyro); } void AP_InertialSensor_Backend::log_accel_raw(uint8_t instance, const uint64_t sample_us, const Vector3f &accel) { DataFlash_Class *dataflash = DataFlash_Class::instance(); if (dataflash == nullptr) { // should not have been called return; } if (should_log_imu_raw()) { uint64_t now = AP_HAL::micros64(); struct log_ACCEL pkt = { LOG_PACKET_HEADER_INIT((uint8_t)(LOG_ACC1_MSG+instance)), time_us : now, sample_us : sample_us?sample_us:now, AccX : accel.x, AccY : accel.y, AccZ : accel.z }; dataflash->WriteBlock(&pkt, sizeof(pkt)); } else { if (!_imu.batchsampler.doing_sensor_rate_logging()) { _imu.batchsampler.sample(instance, AP_InertialSensor::IMU_SENSOR_TYPE_ACCEL, sample_us, accel); } } } void AP_InertialSensor_Backend::_set_accel_max_abs_offset(uint8_t instance, float max_offset) { _imu._accel_max_abs_offsets[instance] = max_offset; } // set accelerometer error_count void AP_InertialSensor_Backend::_set_accel_error_count(uint8_t instance, uint32_t error_count) { _imu._accel_error_count[instance] = error_count; } // set gyro error_count void AP_InertialSensor_Backend::_set_gyro_error_count(uint8_t instance, uint32_t error_count) { _imu._gyro_error_count[instance] = error_count; } // increment accelerometer error_count void AP_InertialSensor_Backend::_inc_accel_error_count(uint8_t instance) { _imu._accel_error_count[instance]++; } // increment gyro error_count void AP_InertialSensor_Backend::_inc_gyro_error_count(uint8_t instance) { _imu._gyro_error_count[instance]++; } // return the requested sample rate in Hz uint16_t AP_InertialSensor_Backend::get_sample_rate_hz(void) const { // enum can be directly cast to Hz return (uint16_t)_imu._sample_rate; } /* publish a temperature value for an instance */ void AP_InertialSensor_Backend::_publish_temperature(uint8_t instance, float temperature) { _imu._temperature[instance] = temperature; /* give the temperature to the control loop in order to keep it constant*/ if (instance == 0) { hal.util->set_imu_temp(temperature); } } /* common gyro update function for all backends */ void AP_InertialSensor_Backend::update_gyro(uint8_t instance) { WITH_SEMAPHORE(_sem); if (_imu._new_gyro_data[instance]) { _publish_gyro(instance, _imu._gyro_filtered[instance]); _imu._new_gyro_data[instance] = false; } // possibly update filter frequency if (_last_gyro_filter_hz[instance] != _gyro_filter_cutoff()) { _imu._gyro_filter[instance].set_cutoff_frequency(_gyro_raw_sample_rate(instance), _gyro_filter_cutoff()); _last_gyro_filter_hz[instance] = _gyro_filter_cutoff(); } } /* common accel update function for all backends */ void AP_InertialSensor_Backend::update_accel(uint8_t instance) { WITH_SEMAPHORE(_sem); if (_imu._new_accel_data[instance]) { _publish_accel(instance, _imu._accel_filtered[instance]); _imu._new_accel_data[instance] = false; } // possibly update filter frequency if (_last_accel_filter_hz[instance] != _accel_filter_cutoff()) { _imu._accel_filter[instance].set_cutoff_frequency(_accel_raw_sample_rate(instance), _accel_filter_cutoff()); _last_accel_filter_hz[instance] = _accel_filter_cutoff(); } } bool AP_InertialSensor_Backend::should_log_imu_raw() const { if (_imu._log_raw_bit == (uint32_t)-1) { // tracker does not set a bit return false; } const DataFlash_Class *instance = DataFlash_Class::instance(); if (instance == nullptr) { return false; } if (!instance->should_log(_imu._log_raw_bit)) { return false; } return true; }