// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- #include "AC_AttitudeControl.h" #include #include // table of user settable parameters const AP_Param::GroupInfo AC_AttitudeControl::var_info[] = { // 0, 1 were RATE_RP_MAX, RATE_Y_MAX // @Param: SLEW_YAW // @DisplayName: Yaw target slew rate // @Description: Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes // @Units: Centi-Degrees/Sec // @Range: 500 18000 // @Increment: 100 // @User: Advanced AP_GROUPINFO("SLEW_YAW", 2, AC_AttitudeControl, _slew_yaw, AC_ATTITUDE_CONTROL_SLEW_YAW_DEFAULT_CDS), // 3 was for ACCEL_RP_MAX // @Param: ACCEL_Y_MAX // @DisplayName: Acceleration Max for Yaw // @Description: Maximum acceleration in yaw axis // @Units: Centi-Degrees/Sec/Sec // @Range: 0 72000 // @Values: 0:Disabled, 18000:Slow, 36000:Medium, 54000:Fast // @Increment: 1000 // @User: Advanced AP_GROUPINFO("ACCEL_Y_MAX", 4, AC_AttitudeControl, _accel_yaw_max, AC_ATTITUDE_CONTROL_ACCEL_Y_MAX_DEFAULT_CDSS), // @Param: RATE_FF_ENAB // @DisplayName: Rate Feedforward Enable // @Description: Controls whether body-frame rate feedfoward is enabled or disabled // @Values: 0:Disabled, 1:Enabled // @User: Advanced AP_GROUPINFO("RATE_FF_ENAB", 5, AC_AttitudeControl, _rate_bf_ff_enabled, AC_ATTITUDE_CONTROL_RATE_BF_FF_DEFAULT), // @Param: ACCEL_R_MAX // @DisplayName: Acceleration Max for Roll // @Description: Maximum acceleration in roll axis // @Units: Centi-Degrees/Sec/Sec // @Range: 0 180000 // @Increment: 1000 // @Values: 0:Disabled, 72000:Slow, 108000:Medium, 162000:Fast // @User: Advanced AP_GROUPINFO("ACCEL_R_MAX", 6, AC_AttitudeControl, _accel_roll_max, AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT_CDSS), // @Param: ACCEL_P_MAX // @DisplayName: Acceleration Max for Pitch // @Description: Maximum acceleration in pitch axis // @Units: Centi-Degrees/Sec/Sec // @Range: 0 180000 // @Increment: 1000 // @Values: 0:Disabled, 72000:Slow, 108000:Medium, 162000:Fast // @User: Advanced AP_GROUPINFO("ACCEL_P_MAX", 7, AC_AttitudeControl, _accel_pitch_max, AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT_CDSS), // IDs 8,9,10,11 RESERVED (in use on Solo) // @Param: ANGLE_BOOST // @DisplayName: Angle Boost // @Description: Angle Boost increases output throttle as the vehicle leans to reduce loss of altitude // @Values: 0:Disabled, 1:Enabled // @User: Advanced AP_GROUPINFO("ANGLE_BOOST", 12, AC_AttitudeControl, _angle_boost_enabled, 1), AP_GROUPEND }; void AC_AttitudeControl::set_dt(float delta_sec) { _dt = delta_sec; _pid_rate_roll.set_dt(_dt); _pid_rate_pitch.set_dt(_dt); _pid_rate_yaw.set_dt(_dt); } void AC_AttitudeControl::relax_bf_rate_controller() { // Set reference angular velocity used in angular velocity controller equal // to the input angular velocity and reset the angular velocity integrators. // This zeros the output of the angular velocity controller. _ang_vel_target_rads = _ahrs.get_gyro(); _pid_rate_roll.reset_I(); _pid_rate_pitch.reset_I(); _pid_rate_yaw.reset_I(); // Write euler derivatives derived from vehicle angular velocity to // _att_target_euler_rate_rads. This resets the state of the input shapers. ang_vel_to_euler_rate(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), _ang_vel_target_rads, _att_target_euler_rate_rads); } void AC_AttitudeControl::shift_ef_yaw_target(float yaw_shift_cd) { _att_target_euler_rad.z = wrap_2PI(_att_target_euler_rad.z + radians(yaw_shift_cd*0.01f)); } void AC_AttitudeControl::input_euler_angle_roll_pitch_euler_rate_yaw_smooth(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds, float smoothing_gain) { // Convert from centidegrees on public interface to radians float euler_roll_angle_rad = radians(euler_roll_angle_cd*0.01f); float euler_pitch_angle_rad = radians(euler_pitch_angle_cd*0.01f); float euler_yaw_rate_rads = radians(euler_yaw_rate_cds*0.01f); // Sanity check smoothing gain smoothing_gain = constrain_float(smoothing_gain,1.0f,50.0f); // Add roll trim to compensate tail rotor thrust in heli (will return zero on multirotors) euler_roll_angle_rad += get_roll_trim_rad(); Vector3f att_error_euler_rad; if ((get_accel_roll_max_radss() > 0.0f) && _rate_bf_ff_enabled) { // When roll acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler roll-axis // angular velocity that will cause the euler roll angle to smoothly stop at the input angle with limited deceleration // and an exponential decay specified by smoothing_gain at the end. float euler_rate_desired_rads = sqrt_controller(euler_roll_angle_rad-_att_target_euler_rad.x, smoothing_gain, get_accel_roll_max_radss()); // Acceleration is limited directly to smooth the beginning of the curve. float rate_change_limit_rads = get_accel_roll_max_radss() * _dt; _att_target_euler_rate_rads.x = constrain_float(euler_rate_desired_rads, _att_target_euler_rate_rads.x-rate_change_limit_rads, _att_target_euler_rate_rads.x+rate_change_limit_rads); // The output rate is used to update the attitude target euler angles and is fed forward into the rate controller. update_att_target_and_error_roll(_att_target_euler_rate_rads.x, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX_RAD); } else { // When acceleration limiting and feedforward are not enabled, the target roll euler angle is simply set to the // input value and the feedforward rate is zeroed. _att_target_euler_rad.x = euler_roll_angle_rad; att_error_euler_rad.x = wrap_PI(_att_target_euler_rad.x - _ahrs.roll); _att_target_euler_rate_rads.x = 0; } _att_target_euler_rad.x = constrain_float(_att_target_euler_rad.x, -get_tilt_limit_rad(), get_tilt_limit_rad()); if ((get_accel_pitch_max_radss() > 0.0f) && _rate_bf_ff_enabled) { // When pitch acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler pitch-axis // angular velocity that will cause the euler pitch angle to smoothly stop at the input angle with limited deceleration // and an exponential decay specified by smoothing_gain at the end. float euler_rate_desired_rads = sqrt_controller(euler_pitch_angle_rad-_att_target_euler_rad.y, smoothing_gain, get_accel_pitch_max_radss()); // Acceleration is limited directly to smooth the beginning of the curve. float rate_change_limit_rads = get_accel_pitch_max_radss() * _dt; _att_target_euler_rate_rads.y = constrain_float(euler_rate_desired_rads, _att_target_euler_rate_rads.y-rate_change_limit_rads, _att_target_euler_rate_rads.y+rate_change_limit_rads); // The output rate is used to update the attitude target euler angles and is fed forward into the rate controller. update_att_target_and_error_pitch(_att_target_euler_rate_rads.y, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX_RAD); } else { _att_target_euler_rad.y = euler_pitch_angle_rad; att_error_euler_rad.y = wrap_PI(_att_target_euler_rad.y - _ahrs.pitch); _att_target_euler_rate_rads.y = 0; } _att_target_euler_rad.y = constrain_float(_att_target_euler_rad.y, -get_tilt_limit_rad(), get_tilt_limit_rad()); if (get_accel_yaw_max_radss() > 0.0f) { // When yaw acceleration limiting is enabled, the yaw input shaper constrains angular acceleration about the yaw axis, slewing // the output rate towards the input rate. float rate_change_limit_rads = get_accel_yaw_max_radss() * _dt; _att_target_euler_rate_rads.z += constrain_float(euler_yaw_rate_rads - _att_target_euler_rate_rads.z, -rate_change_limit_rads, rate_change_limit_rads); // The output rate is used to update the attitude target euler angles and is fed forward into the rate controller. update_att_target_and_error_yaw(_att_target_euler_rate_rads.z, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX_RAD); } else { // When yaw acceleration limiting is disabled, the attitude target is simply rotated using the input rate and the input rate // is fed forward into the rate controller. _att_target_euler_rate_rads.z = euler_yaw_rate_rads; update_att_target_and_error_yaw(_att_target_euler_rate_rads.z, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX_RAD); } // Convert 321-intrinsic euler angle errors to a body-frame rotation vector // NOTE: This results in an approximation of the attitude error based on a linearization about the current attitude euler_rate_to_ang_vel(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), att_error_euler_rad, _att_error_rot_vec_rad); // Compute the angular velocity target from the attitude error update_ang_vel_target_from_att_error(); // Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward if (_rate_bf_ff_enabled) { euler_rate_to_ang_vel(_att_target_euler_rad, _att_target_euler_rate_rads, _att_target_ang_vel_rads); } else { euler_rate_to_ang_vel(_att_target_euler_rad, Vector3f(0,0,_att_target_euler_rate_rads.z), _att_target_ang_vel_rads); } // Add the angular velocity feedforward, rotated into vehicle frame Matrix3f Trv; get_rotation_reference_to_vehicle(Trv); _ang_vel_target_rads += Trv * _att_target_ang_vel_rads; } void AC_AttitudeControl::input_euler_angle_roll_pitch_euler_rate_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds) { // Convert from centidegrees on public interface to radians float euler_roll_angle_rad = radians(euler_roll_angle_cd*0.01f); float euler_pitch_angle_rad = radians(euler_pitch_angle_cd*0.01f); float euler_yaw_rate_rads = radians(euler_yaw_rate_cds*0.01f); Vector3f att_error_euler_rad; // Add roll trim to compensate tail rotor thrust in heli (will return zero on multirotors) euler_roll_angle_rad += get_roll_trim_rad(); // Set roll/pitch attitude targets from input. _att_target_euler_rad.x = constrain_float(euler_roll_angle_rad, -get_tilt_limit_rad(), get_tilt_limit_rad()); _att_target_euler_rad.y = constrain_float(euler_pitch_angle_rad, -get_tilt_limit_rad(), get_tilt_limit_rad()); // Update roll/pitch attitude error. att_error_euler_rad.x = wrap_PI(_att_target_euler_rad.x - _ahrs.roll); att_error_euler_rad.y = wrap_PI(_att_target_euler_rad.y - _ahrs.pitch); // Zero the roll and pitch feed-forward rate. _att_target_euler_rate_rads.x = 0; _att_target_euler_rate_rads.y = 0; if (get_accel_yaw_max_radss() > 0.0f) { // When yaw acceleration limiting is enabled, the yaw input shaper constrains angular acceleration about the yaw axis, slewing // the output rate towards the input rate. float rate_change_limit_rads = get_accel_yaw_max_radss() * _dt; _att_target_euler_rate_rads.z += constrain_float(euler_yaw_rate_rads - _att_target_euler_rate_rads.z, -rate_change_limit_rads, rate_change_limit_rads); // The output rate is used to update the attitude target euler angles and is fed forward into the rate controller. update_att_target_and_error_yaw(_att_target_euler_rate_rads.z, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX_RAD); } else { // When yaw acceleration limiting is disabled, the attitude target is simply rotated using the input rate and the input rate // is fed forward into the rate controller. _att_target_euler_rate_rads.z = euler_yaw_rate_rads; update_att_target_and_error_yaw(_att_target_euler_rate_rads.z, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX_RAD); } // Convert 321-intrinsic euler angle errors to a body-frame rotation vector // NOTE: This results in an approximation of the attitude error based on a linearization about the current attitude euler_rate_to_ang_vel(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), att_error_euler_rad, _att_error_rot_vec_rad); // Compute the angular velocity target from the attitude error update_ang_vel_target_from_att_error(); // Convert euler angle derivatives of desired attitude into a body-frame angular velocity vector for feedforward euler_rate_to_ang_vel(_att_target_euler_rad, _att_target_euler_rate_rads, _att_target_ang_vel_rads); // Add the angular velocity feedforward, rotated into vehicle frame Matrix3f Trv; get_rotation_reference_to_vehicle(Trv); _ang_vel_target_rads += Trv * _att_target_ang_vel_rads; } void AC_AttitudeControl::input_euler_angle_roll_pitch_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_angle_cd, bool slew_yaw) { // Convert from centidegrees on public interface to radians float euler_roll_angle_rad = radians(euler_roll_angle_cd*0.01f); float euler_pitch_angle_rad = radians(euler_pitch_angle_cd*0.01f); float euler_yaw_angle_rad = radians(euler_yaw_angle_cd*0.01f); Vector3f att_error_euler_rad; // Add roll trim to compensate tail rotor thrust in heli (will return zero on multirotors) euler_roll_angle_rad += get_roll_trim_rad(); // Set attitude targets from input. _att_target_euler_rad.x = constrain_float(euler_roll_angle_rad, -get_tilt_limit_rad(), get_tilt_limit_rad()); _att_target_euler_rad.y = constrain_float(euler_pitch_angle_rad, -get_tilt_limit_rad(), get_tilt_limit_rad()); _att_target_euler_rad.z = euler_yaw_angle_rad; // Update attitude error. att_error_euler_rad.x = wrap_PI(_att_target_euler_rad.x - _ahrs.roll); att_error_euler_rad.y = wrap_PI(_att_target_euler_rad.y - _ahrs.pitch); att_error_euler_rad.z = wrap_PI(_att_target_euler_rad.z - _ahrs.yaw); // Constrain the yaw angle error if (slew_yaw) { att_error_euler_rad.z = constrain_float(att_error_euler_rad.z,-get_slew_yaw_rads(),get_slew_yaw_rads()); } // Convert 321-intrinsic euler angle errors to a body-frame rotation vector // NOTE: This results in an approximation of the attitude error based on a linearization about the current attitude euler_rate_to_ang_vel(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), att_error_euler_rad, _att_error_rot_vec_rad); // Compute the angular velocity target from the attitude error update_ang_vel_target_from_att_error(); // Keep euler derivative updated ang_vel_to_euler_rate(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), _ang_vel_target_rads, _att_target_euler_rate_rads); } void AC_AttitudeControl::input_euler_rate_roll_pitch_yaw(float euler_roll_rate_cds, float euler_pitch_rate_cds, float euler_yaw_rate_cds) { // Convert from centidegrees on public interface to radians float euler_roll_rate_rads = radians(euler_roll_rate_cds*0.01f); float euler_pitch_rate_rads = radians(euler_pitch_rate_cds*0.01f); float euler_yaw_rate_rads = radians(euler_yaw_rate_cds*0.01f); Vector3f att_error_euler_rad; // Compute acceleration-limited euler roll rate if (get_accel_roll_max_radss() > 0.0f) { float rate_change_limit_rads = get_accel_roll_max_radss() * _dt; _att_target_euler_rate_rads.x += constrain_float(euler_roll_rate_rads - _att_target_euler_rate_rads.x, -rate_change_limit_rads, rate_change_limit_rads); } else { _att_target_euler_rate_rads.x = euler_roll_rate_rads; } // Compute acceleration-limited euler pitch rate if (get_accel_pitch_max_radss() > 0.0f) { float rate_change_limit_rads = get_accel_pitch_max_radss() * _dt; _att_target_euler_rate_rads.y += constrain_float(euler_pitch_rate_rads - _att_target_euler_rate_rads.y, -rate_change_limit_rads, rate_change_limit_rads); } else { _att_target_euler_rate_rads.y = euler_pitch_rate_rads; } // Compute acceleration-limited euler yaw rate if (get_accel_yaw_max_radss() > 0.0f) { float rate_change_limit_rads = get_accel_yaw_max_radss() * _dt; _att_target_euler_rate_rads.z += constrain_float(euler_yaw_rate_rads - _att_target_euler_rate_rads.z, -rate_change_limit_rads, rate_change_limit_rads); } else { _att_target_euler_rate_rads.z = euler_yaw_rate_rads; } // Update the attitude target from the computed euler rates update_att_target_and_error_roll(_att_target_euler_rate_rads.x, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX_RAD); update_att_target_and_error_pitch(_att_target_euler_rate_rads.y, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX_RAD); update_att_target_and_error_yaw(_att_target_euler_rate_rads.z, att_error_euler_rad, AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX_RAD); // Apply tilt limit _att_target_euler_rad.x = constrain_float(_att_target_euler_rad.x, -get_tilt_limit_rad(), get_tilt_limit_rad()); _att_target_euler_rad.y = constrain_float(_att_target_euler_rad.y, -get_tilt_limit_rad(), get_tilt_limit_rad()); // Convert 321-intrinsic euler angle errors to a body-frame rotation vector // NOTE: This results in an approximation of the attitude error based on a linearization about the current attitude euler_rate_to_ang_vel(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), att_error_euler_rad, _att_error_rot_vec_rad); // Compute the angular velocity target from the attitude error update_ang_vel_target_from_att_error(); // Convert euler angle derivatives of desired attitude into a body-frame angular velocity vector for feedforward euler_rate_to_ang_vel(_att_target_euler_rad, _att_target_euler_rate_rads, _att_target_ang_vel_rads); // Add the angular velocity feedforward, rotated into vehicle frame Matrix3f Trv; get_rotation_reference_to_vehicle(Trv); _ang_vel_target_rads += Trv * _att_target_ang_vel_rads; } void AC_AttitudeControl::input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds) { // Convert from centidegrees on public interface to radians float roll_rate_bf_rads = radians(roll_rate_bf_cds*0.01f); float pitch_rate_bf_rads = radians(pitch_rate_bf_cds*0.01f); float yaw_rate_bf_rads = radians(yaw_rate_bf_cds*0.01f); // Compute acceleration-limited body-frame roll rate if (get_accel_roll_max_radss() > 0.0f) { float rate_change_limit_rads = get_accel_roll_max_radss() * _dt; _att_target_ang_vel_rads.x += constrain_float(roll_rate_bf_rads - _att_target_ang_vel_rads.x, -rate_change_limit_rads, rate_change_limit_rads); } else { _att_target_ang_vel_rads.x = roll_rate_bf_rads; } // Compute acceleration-limited body-frame pitch rate if (get_accel_pitch_max_radss() > 0.0f) { float rate_change_limit_rads = get_accel_pitch_max_radss() * _dt; _att_target_ang_vel_rads.y += constrain_float(pitch_rate_bf_rads - _att_target_ang_vel_rads.y, -rate_change_limit_rads, rate_change_limit_rads); } else { _att_target_ang_vel_rads.y = pitch_rate_bf_rads; } // Compute acceleration-limited body-frame yaw rate if (get_accel_yaw_max_radss() > 0.0f) { float rate_change_limit_rads = get_accel_yaw_max_radss() * _dt; _att_target_ang_vel_rads.z += constrain_float(yaw_rate_bf_rads - _att_target_ang_vel_rads.z, -rate_change_limit_rads, rate_change_limit_rads); } else { _att_target_ang_vel_rads.z = yaw_rate_bf_rads; } // Compute quaternion target attitude Quaternion att_target_quat; att_target_quat.from_euler(_att_target_euler_rad.x,_att_target_euler_rad.y,_att_target_euler_rad.z); // Rotate quaternion target attitude using computed rate att_target_quat.rotate(_att_target_ang_vel_rads*_dt); att_target_quat.normalize(); // Call quaternion attitude controller input_att_quat_bf_ang_vel(att_target_quat, _att_target_ang_vel_rads); } void AC_AttitudeControl::input_att_quat_bf_ang_vel(const Quaternion& att_target_quat, const Vector3f& att_target_ang_vel_rads) { // Update euler attitude target and angular velocity targets att_target_quat.to_euler(_att_target_euler_rad.x,_att_target_euler_rad.y,_att_target_euler_rad.z); _att_target_ang_vel_rads = att_target_ang_vel_rads; ang_vel_to_euler_rate(_att_target_euler_rad, att_target_ang_vel_rads, _att_target_euler_rate_rads); // Retrieve quaternion vehicle attitude // TODO add _ahrs.get_quaternion() Quaternion att_vehicle_quat; att_vehicle_quat.from_rotation_matrix(_ahrs.get_rotation_body_to_ned()); // Compute attitude error (att_vehicle_quat.inverse()*att_target_quat).to_axis_angle(_att_error_rot_vec_rad); // Compute the angular velocity target from the attitude error update_ang_vel_target_from_att_error(); // Add the angular velocity feedforward, rotated into vehicle frame Matrix3f Trv; get_rotation_reference_to_vehicle(Trv); _ang_vel_target_rads += Trv * _att_target_ang_vel_rads; } void AC_AttitudeControl::rate_controller_run() { _motors.set_roll(rate_bf_to_motor_roll(_ang_vel_target_rads.x)); _motors.set_pitch(rate_bf_to_motor_pitch(_ang_vel_target_rads.y)); _motors.set_yaw(rate_bf_to_motor_yaw(_ang_vel_target_rads.z)); } void AC_AttitudeControl::euler_rate_to_ang_vel(const Vector3f& euler_rad, const Vector3f& euler_rate_rads, Vector3f& ang_vel_rads) { float sin_theta = sinf(euler_rad.y); float cos_theta = cosf(euler_rad.y); float sin_phi = sinf(euler_rad.x); float cos_phi = cosf(euler_rad.x); ang_vel_rads.x = euler_rate_rads.x - sin_theta * euler_rate_rads.z; ang_vel_rads.y = cos_phi * euler_rate_rads.y + sin_phi * cos_theta * euler_rate_rads.z; ang_vel_rads.z = -sin_phi * euler_rate_rads.y + cos_theta * cos_phi * euler_rate_rads.z; } bool AC_AttitudeControl::ang_vel_to_euler_rate(const Vector3f& euler_rad, const Vector3f& ang_vel_rads, Vector3f& euler_rate_rads) { float sin_theta = sinf(euler_rad.y); float cos_theta = cosf(euler_rad.y); float sin_phi = sinf(euler_rad.x); float cos_phi = cosf(euler_rad.x); // When the vehicle pitches all the way up or all the way down, the euler angles become discontinuous. In this case, we just return false. if (is_zero(cos_theta)) { return false; } euler_rate_rads.x = ang_vel_rads.x + sin_phi * (sin_theta/cos_theta) * ang_vel_rads.y + cos_phi * (sin_theta/cos_theta) * ang_vel_rads.z; euler_rate_rads.y = cos_phi * ang_vel_rads.y - sin_phi * ang_vel_rads.z; euler_rate_rads.z = (sin_phi / cos_theta) * ang_vel_rads.y + (cos_phi / cos_theta) * ang_vel_rads.z; return true; } void AC_AttitudeControl::update_att_target_and_error_roll(float euler_roll_rate_rads, Vector3f &att_error_euler_rad, float overshoot_max_rad) { // Compute constrained angle error att_error_euler_rad.x = wrap_PI(_att_target_euler_rad.x - _ahrs.roll); att_error_euler_rad.x = constrain_float(att_error_euler_rad.x, -overshoot_max_rad, overshoot_max_rad); // Update attitude target from constrained angle error _att_target_euler_rad.x = att_error_euler_rad.x + _ahrs.roll; // Increment the attitude target _att_target_euler_rad.x += euler_roll_rate_rads * _dt; _att_target_euler_rad.x = wrap_PI(_att_target_euler_rad.x); } void AC_AttitudeControl::update_att_target_and_error_pitch(float euler_pitch_rate_rads, Vector3f &att_error_euler_rad, float overshoot_max_rad) { // Compute constrained angle error att_error_euler_rad.y = wrap_PI(_att_target_euler_rad.y - _ahrs.pitch); att_error_euler_rad.y = constrain_float(att_error_euler_rad.y, -overshoot_max_rad, overshoot_max_rad); // Update attitude target from constrained angle error _att_target_euler_rad.y = att_error_euler_rad.y + _ahrs.pitch; // Increment the attitude target _att_target_euler_rad.y += euler_pitch_rate_rads * _dt; _att_target_euler_rad.y = wrap_PI(_att_target_euler_rad.y); } void AC_AttitudeControl::update_att_target_and_error_yaw(float euler_yaw_rate_rads, Vector3f &att_error_euler_rad, float overshoot_max_rad) { // Compute constrained angle error att_error_euler_rad.z = wrap_PI(_att_target_euler_rad.z - _ahrs.yaw); att_error_euler_rad.z = constrain_float(att_error_euler_rad.z, -overshoot_max_rad, overshoot_max_rad); // Update attitude target from constrained angle error _att_target_euler_rad.z = att_error_euler_rad.z + _ahrs.yaw; // Increment the attitude target _att_target_euler_rad.z += euler_yaw_rate_rads * _dt; _att_target_euler_rad.z = wrap_2PI(_att_target_euler_rad.z); } void AC_AttitudeControl::integrate_bf_rate_error_to_angle_errors() { // Integrate the angular velocity error into the attitude error _att_error_rot_vec_rad += (_att_target_ang_vel_rads - _ahrs.get_gyro()) * _dt; // Constrain attitude error _att_error_rot_vec_rad.x = constrain_float(_att_error_rot_vec_rad.x, -AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX_RAD, AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX_RAD); _att_error_rot_vec_rad.y = constrain_float(_att_error_rot_vec_rad.y, -AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX_RAD, AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX_RAD); _att_error_rot_vec_rad.z = constrain_float(_att_error_rot_vec_rad.z, -AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX_RAD, AC_ATTITUDE_RATE_STAB_ACRO_OVERSHOOT_ANGLE_MAX_RAD); } void AC_AttitudeControl::update_ang_vel_target_from_att_error() { // Compute the roll angular velocity demand from the roll angle error if (_att_ctrl_use_accel_limit && _accel_roll_max > 0.0f) { _ang_vel_target_rads.x = sqrt_controller(_att_error_rot_vec_rad.x, _p_angle_roll.kP(), constrain_float(get_accel_roll_max_radss()/2.0f, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MIN_RADSS, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MAX_RADSS)); }else{ _ang_vel_target_rads.x = _p_angle_roll.kP() * _att_error_rot_vec_rad.x; } // Compute the pitch angular velocity demand from the roll angle error if (_att_ctrl_use_accel_limit && _accel_pitch_max > 0.0f) { _ang_vel_target_rads.y = sqrt_controller(_att_error_rot_vec_rad.y, _p_angle_pitch.kP(), constrain_float(get_accel_pitch_max_radss()/2.0f, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MIN_RADSS, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MAX_RADSS)); }else{ _ang_vel_target_rads.y = _p_angle_pitch.kP() * _att_error_rot_vec_rad.y; } // Compute the yaw angular velocity demand from the roll angle error if (_att_ctrl_use_accel_limit && _accel_yaw_max > 0.0f) { _ang_vel_target_rads.z = sqrt_controller(_att_error_rot_vec_rad.z, _p_angle_yaw.kP(), constrain_float(get_accel_yaw_max_radss()/2.0f, AC_ATTITUDE_ACCEL_Y_CONTROLLER_MIN_RADSS, AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS)); }else{ _ang_vel_target_rads.z = _p_angle_yaw.kP() * _att_error_rot_vec_rad.z; } // Add feedforward term that attempts to ensure that the copter yaws about the reference // Z axis, rather than the vehicle body Z axis. // NOTE: This is a small-angle approximation. _ang_vel_target_rads.x += _att_error_rot_vec_rad.y * _ahrs.get_gyro().z; _ang_vel_target_rads.y += -_att_error_rot_vec_rad.x * _ahrs.get_gyro().z; } float AC_AttitudeControl::rate_bf_to_motor_roll(float rate_target_rads) { float current_rate_rads = _ahrs.get_gyro().x; float rate_error_rads = rate_target_rads - current_rate_rads; // For legacy reasons, we convert to centi-degrees before inputting to the PID _pid_rate_roll.set_input_filter_d(degrees(rate_error_rads)*100.0f); _pid_rate_roll.set_desired_rate(degrees(rate_target_rads)*100.0f); float integrator = _pid_rate_roll.get_integrator(); // Ensure that integrator can only be reduced if the output is saturated if (!_motors.limit.roll_pitch || ((integrator > 0 && rate_error_rads < 0) || (integrator < 0 && rate_error_rads > 0))) { integrator = _pid_rate_roll.get_i(); } // Compute output float output = _pid_rate_roll.get_p() + integrator + _pid_rate_roll.get_d(); // Constrain output return constrain_float(output, -AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX); } float AC_AttitudeControl::rate_bf_to_motor_pitch(float rate_target_rads) { float current_rate_rads = _ahrs.get_gyro().y; float rate_error_rads = rate_target_rads - current_rate_rads; // For legacy reasons, we convert to centi-degrees before inputting to the PID _pid_rate_pitch.set_input_filter_d(degrees(rate_error_rads)*100.0f); _pid_rate_pitch.set_desired_rate(degrees(rate_target_rads)*100.0f); float integrator = _pid_rate_pitch.get_integrator(); // Ensure that integrator can only be reduced if the output is saturated if (!_motors.limit.roll_pitch || ((integrator > 0 && rate_error_rads < 0) || (integrator < 0 && rate_error_rads > 0))) { integrator = _pid_rate_pitch.get_i(); } // Compute output float output = _pid_rate_pitch.get_p() + integrator + _pid_rate_pitch.get_d(); // Constrain output return constrain_float(output, -AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX); } float AC_AttitudeControl::rate_bf_to_motor_yaw(float rate_target_rads) { float current_rate_rads = _ahrs.get_gyro().z; float rate_error_rads = rate_target_rads - current_rate_rads; // For legacy reasons, we convert to centi-degrees before inputting to the PID _pid_rate_yaw.set_input_filter_all(degrees(rate_error_rads)*100.0f); _pid_rate_yaw.set_desired_rate(degrees(rate_target_rads)*100.0f); float integrator = _pid_rate_yaw.get_integrator(); // Ensure that integrator can only be reduced if the output is saturated if (!_motors.limit.yaw || ((integrator > 0 && rate_error_rads < 0) || (integrator < 0 && rate_error_rads > 0))) { integrator = _pid_rate_yaw.get_i(); } // Compute output float output = _pid_rate_yaw.get_p() + integrator + _pid_rate_yaw.get_d(); // Constrain output return constrain_float(output, -AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX, AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX); } void AC_AttitudeControl::accel_limiting(bool enable_limits) { if (enable_limits) { // If enabling limits, reload from eeprom or set to defaults if (is_zero(_accel_roll_max)) { _accel_roll_max.load(); } if (is_zero(_accel_pitch_max)) { _accel_pitch_max.load(); } if (is_zero(_accel_yaw_max)) { _accel_yaw_max.load(); } } else { _accel_roll_max = 0.0f; _accel_pitch_max = 0.0f; _accel_yaw_max = 0.0f; } } void AC_AttitudeControl::set_throttle_out(float throttle_in, bool apply_angle_boost, float filter_cutoff) { _throttle_in_filt.apply(throttle_in, _dt); _motors.set_stabilizing(true); _motors.set_throttle_filter_cutoff(filter_cutoff); if (apply_angle_boost) { _motors.set_throttle(get_boosted_throttle(throttle_in)); }else{ _motors.set_throttle(throttle_in); // Clear angle_boost for logging purposes _angle_boost = 0; } } void AC_AttitudeControl::set_throttle_out_unstabilized(float throttle_in, bool reset_attitude_control, float filter_cutoff) { _throttle_in_filt.apply(throttle_in, _dt); if (reset_attitude_control) { relax_bf_rate_controller(); set_yaw_target_to_current_heading(); } _motors.set_throttle_filter_cutoff(filter_cutoff); _motors.set_stabilizing(false); _motors.set_throttle(throttle_in); _angle_boost = 0; } float AC_AttitudeControl::sqrt_controller(float error, float p, float second_ord_lim) { if (second_ord_lim < 0.0f || is_zero(second_ord_lim) || is_zero(p)) { return error*p; } float linear_dist = second_ord_lim/sq(p); if (error > linear_dist) { return safe_sqrt(2.0f*second_ord_lim*(error-(linear_dist/2.0f))); } else if (error < -linear_dist) { return -safe_sqrt(2.0f*second_ord_lim*(-error-(linear_dist/2.0f))); } else { return error*p; } } void AC_AttitudeControl::get_rotation_vehicle_to_ned(Matrix3f& m) { m = _ahrs.get_rotation_body_to_ned(); } void AC_AttitudeControl::get_rotation_ned_to_vehicle(Matrix3f& m) { get_rotation_vehicle_to_ned(m); m = m.transposed(); } void AC_AttitudeControl::get_rotation_reference_to_ned(Matrix3f& m) { m.from_euler(_att_target_euler_rad.x,_att_target_euler_rad.y,_att_target_euler_rad.z); } void AC_AttitudeControl::get_rotation_ned_to_reference(Matrix3f& m) { get_rotation_reference_to_ned(m); m = m.transposed(); } void AC_AttitudeControl::get_rotation_vehicle_to_reference(Matrix3f& m) { Matrix3f Tvn; Matrix3f Tnr; get_rotation_vehicle_to_ned(Tvn); get_rotation_ned_to_reference(Tnr); m = Tnr * Tvn; } void AC_AttitudeControl::get_rotation_reference_to_vehicle(Matrix3f& m) { get_rotation_vehicle_to_reference(m); m = m.transposed(); } float AC_AttitudeControl::max_rate_step_bf_roll() { float alpha = _pid_rate_roll.get_filt_alpha(); float alpha_remaining = 1-alpha; return AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX/((alpha_remaining*alpha_remaining*alpha_remaining*alpha*_pid_rate_roll.kD())/_dt + _pid_rate_roll.kP()); } float AC_AttitudeControl::max_rate_step_bf_pitch() { float alpha = _pid_rate_pitch.get_filt_alpha(); float alpha_remaining = 1-alpha; return AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX/((alpha_remaining*alpha_remaining*alpha_remaining*alpha*_pid_rate_pitch.kD())/_dt + _pid_rate_pitch.kP()); } float AC_AttitudeControl::max_rate_step_bf_yaw() { float alpha = _pid_rate_yaw.get_filt_alpha(); float alpha_remaining = 1-alpha; return AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX/((alpha_remaining*alpha_remaining*alpha_remaining*alpha*_pid_rate_yaw.kD())/_dt + _pid_rate_yaw.kP()); }