#include "mode.h" #include "Plane.h" bool ModeLoiter::_enter() { plane.do_loiter_at_location(); plane.setup_terrain_target_alt(plane.next_WP_loc); // make sure the local target altitude is the same as the nav target used for loiter nav // this allows us to do FBWB style stick control /*IGNORE_RETURN(plane.next_WP_loc.get_alt_cm(Location::AltFrame::ABSOLUTE, plane.target_altitude.amsl_cm));*/ if (plane.stick_mixing_enabled() && (plane.flight_option_enabled(FlightOptions::ENABLE_LOITER_ALT_CONTROL))) { plane.set_target_altitude_current(); } plane.loiter_angle_reset(); return true; } void ModeLoiter::update() { plane.calc_nav_roll(); if (plane.stick_mixing_enabled() && plane.flight_option_enabled(FlightOptions::ENABLE_LOITER_ALT_CONTROL)) { plane.update_fbwb_speed_height(); } else { plane.calc_nav_pitch(); plane.calc_throttle(); } #if AP_SCRIPTING_ENABLED if (plane.nav_scripting_active()) { // while a trick is running we reset altitude plane.set_target_altitude_current(); plane.next_WP_loc.set_alt_cm(plane.target_altitude.amsl_cm, Location::AltFrame::ABSOLUTE); } #endif } bool ModeLoiter::isHeadingLinedUp(const Location loiterCenterLoc, const Location targetLoc) { // Return true if current heading is aligned to vector to targetLoc. // Tolerance is initially 10 degrees and grows at 10 degrees for each loiter circle completed. // Corrected radius for altitude const float loiter_radius = plane.nav_controller->loiter_radius(fabsf(plane.loiter.radius)); if (!is_positive(loiter_radius)) { // Zero is invalid, protect against divide by zero for destination inside loiter radius case return true; } // Calculate relative position of the vehicle relative to loiter center projected onto the closest point of the loiter circle // This removes error due to radial position as the nav controller attempts to track the circle const Vector2f projected_pos = loiterCenterLoc.get_distance_NE(plane.current_loc).normalized() * loiter_radius; // Target position relative to loiter center const Vector2f target_pos = loiterCenterLoc.get_distance_NE(targetLoc); // Distance between loiter circle and target const float target_dist = target_pos.length(); if (!is_positive(target_dist)) { // Target is coincident with loiter center, no heading will be closer than any other return true; } // Target bearing in centi-degrees int32_t target_bearing_cd; if (target_dist >= loiter_radius) { // Destination outside loiter radius, heading will always line up with destination // Vector from between projected vehicle position and target postion const Vector2f pos_to_target = target_pos - projected_pos; target_bearing_cd = degrees(pos_to_target.angle()) * 100; } else { // Destination is inside loiter, heading will never line up with destination // Advance turn point by the angle of a segment with chord "a" // This results in turning earlier as the target point approaches the center // If target is on radius angle of 0 and angle of 60 deg if target is on center const float a = loiter_radius - target_dist; const float segment_angle = 2.0 * asinf(a / (2.0 * loiter_radius)); // Pick the intersection point that will be hit first for the current loiter direction, add 90 deg to get the tangent angle target_bearing_cd = degrees(wrap_PI(target_pos.angle() + (M_PI_2 - segment_angle) * plane.loiter.direction)) * 100; } // Ideal heading in centi-degrees, +- 90 to get tangent to loiter circle at closest point const int32_t current_heading_cd = degrees(wrap_PI(projected_pos.angle() + M_PI_2 * plane.loiter.direction)) * 100; return isHeadingLinedUp_cd(target_bearing_cd, current_heading_cd); } bool ModeLoiter::isHeadingLinedUp_cd(const int32_t bearing_cd) { // get current heading. const int32_t heading_cd = (wrap_360(degrees(ahrs.groundspeed_vector().angle())))*100; return isHeadingLinedUp_cd(bearing_cd, heading_cd); } bool ModeLoiter::isHeadingLinedUp_cd(const int32_t bearing_cd, const int32_t heading_cd) { // Return true if current heading is aligned to bearing_cd. // Tolerance is initially 10 degrees and grows at 10 degrees for each loiter circle completed. const int32_t heading_err_cd = wrap_180_cd(bearing_cd - heading_cd); /* Check to see if the the plane is heading toward the land waypoint. We use 20 degrees (+/-10 deg) of margin so that we can handle 200 degrees/second of yaw. After every full circle, extend acceptance criteria to ensure aircraft will not loop forever in case high winds are forcing it beyond 200 deg/sec when passing the desired exit course */ // Use integer division to get discrete steps const int32_t expanded_acceptance = 1000 * (labs(plane.loiter.sum_cd) / 36000); if (labs(heading_err_cd) <= 1000 + expanded_acceptance) { // Want to head in a straight line from _here_ to the next waypoint instead of center of loiter wp // 0 to xtrack from center of waypoint, 1 to xtrack from tangent exit location if (plane.next_WP_loc.loiter_xtrack) { plane.next_WP_loc = plane.current_loc; } return true; } return false; } void ModeLoiter::navigate() { if (plane.flight_option_enabled(FlightOptions::ENABLE_LOITER_ALT_CONTROL)) { // update the WP alt from the global target adjusted by update_fbwb_speed_height plane.next_WP_loc.set_alt_cm(plane.target_altitude.amsl_cm, Location::AltFrame::ABSOLUTE); } #if AP_SCRIPTING_ENABLED if (plane.nav_scripting_active()) { // don't try to navigate while running trick return; } #endif // Zero indicates to use WP_LOITER_RAD plane.update_loiter(0); } void ModeLoiter::update_target_altitude() { if (plane.stick_mixing_enabled() && (plane.flight_option_enabled(FlightOptions::ENABLE_LOITER_ALT_CONTROL))) { return; } Mode::update_target_altitude(); }