/* * Location.cpp */ #include "Location.h" #include #include AP_Terrain *Location::_terrain = nullptr; /// constructors Location::Location() { zero(); } const Location definitely_zero{}; bool Location::is_zero(void) const { return !memcmp(this, &definitely_zero, sizeof(*this)); } void Location::zero(void) { memset(this, 0, sizeof(*this)); } Location::Location(int32_t latitude, int32_t longitude, int32_t alt_in_cm, AltFrame frame) { zero(); lat = latitude; lng = longitude; set_alt_cm(alt_in_cm, frame); } Location::Location(const Vector3f &ekf_offset_neu) { // store alt and alt frame set_alt_cm(ekf_offset_neu.z, AltFrame::ABOVE_ORIGIN); // calculate lat, lon Location ekf_origin; if (AP::ahrs().get_origin(ekf_origin)) { lat = ekf_origin.lat; lng = ekf_origin.lng; offset(ekf_offset_neu.x / 100.0f, ekf_offset_neu.y / 100.0f); } } void Location::set_alt_cm(int32_t alt_cm, AltFrame frame) { alt = alt_cm; relative_alt = false; terrain_alt = false; origin_alt = false; switch (frame) { case AltFrame::ABSOLUTE: // do nothing break; case AltFrame::ABOVE_HOME: relative_alt = true; break; case AltFrame::ABOVE_ORIGIN: origin_alt = true; break; case AltFrame::ABOVE_TERRAIN: // we mark it as a relative altitude, as it doesn't have // home alt added relative_alt = true; terrain_alt = true; break; } } // converts altitude to new frame bool Location::change_alt_frame(AltFrame desired_frame) { int32_t new_alt_cm; if (!get_alt_cm(desired_frame, new_alt_cm)) { return false; } set_alt_cm(new_alt_cm, desired_frame); return true; } // get altitude frame Location::AltFrame Location::get_alt_frame() const { if (terrain_alt) { return AltFrame::ABOVE_TERRAIN; } if (origin_alt) { return AltFrame::ABOVE_ORIGIN; } if (relative_alt) { return AltFrame::ABOVE_HOME; } return AltFrame::ABSOLUTE; } /// get altitude in desired frame bool Location::get_alt_cm(AltFrame desired_frame, int32_t &ret_alt_cm) const { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (!initialised()) { AP_HAL::panic("Should not be called on invalid location"); } #endif Location::AltFrame frame = get_alt_frame(); // shortcut if desired and underlying frame are the same if (desired_frame == frame) { ret_alt_cm = alt; return true; } // check for terrain altitude float alt_terr_cm = 0; if (frame == AltFrame::ABOVE_TERRAIN || desired_frame == AltFrame::ABOVE_TERRAIN) { #if AP_TERRAIN_AVAILABLE if (_terrain == nullptr || !_terrain->height_amsl(*(Location *)this, alt_terr_cm, true)) { return false; } // convert terrain alt to cm alt_terr_cm *= 100.0f; #else return false; #endif } // convert alt to absolute int32_t alt_abs = 0; switch (frame) { case AltFrame::ABSOLUTE: alt_abs = alt; break; case AltFrame::ABOVE_HOME: if (!AP::ahrs().home_is_set()) { return false; } alt_abs = alt + AP::ahrs().get_home().alt; break; case AltFrame::ABOVE_ORIGIN: { // fail if we cannot get ekf origin Location ekf_origin; if (!AP::ahrs().get_origin(ekf_origin)) { return false; } alt_abs = alt + ekf_origin.alt; } break; case AltFrame::ABOVE_TERRAIN: alt_abs = alt + alt_terr_cm; break; } // convert absolute to desired frame switch (desired_frame) { case AltFrame::ABSOLUTE: ret_alt_cm = alt_abs; return true; case AltFrame::ABOVE_HOME: if (!AP::ahrs().home_is_set()) { return false; } ret_alt_cm = alt_abs - AP::ahrs().get_home().alt; return true; case AltFrame::ABOVE_ORIGIN: { // fail if we cannot get ekf origin Location ekf_origin; if (!AP::ahrs().get_origin(ekf_origin)) { return false; } ret_alt_cm = alt_abs - ekf_origin.alt; return true; } case AltFrame::ABOVE_TERRAIN: ret_alt_cm = alt_abs - alt_terr_cm; return true; } return false; } bool Location::get_vector_xy_from_origin_NE(Vector2f &vec_ne) const { Location ekf_origin; if (!AP::ahrs().get_origin(ekf_origin)) { return false; } vec_ne.x = (lat-ekf_origin.lat) * LATLON_TO_CM; vec_ne.y = (lng-ekf_origin.lng) * LATLON_TO_CM * ekf_origin.longitude_scale(); return true; } bool Location::get_vector_from_origin_NEU(Vector3f &vec_neu) const { // convert lat, lon Vector2f vec_ne; if (!get_vector_xy_from_origin_NE(vec_ne)) { return false; } vec_neu.x = vec_ne.x; vec_neu.y = vec_ne.y; // convert altitude int32_t alt_above_origin_cm = 0; if (!get_alt_cm(AltFrame::ABOVE_ORIGIN, alt_above_origin_cm)) { return false; } vec_neu.z = alt_above_origin_cm; return true; } // return distance in meters between two locations float Location::get_distance(const struct Location &loc2) const { float dlat = (float)(loc2.lat - lat); float dlng = ((float)(loc2.lng - lng)) * loc2.longitude_scale(); return norm(dlat, dlng) * LOCATION_SCALING_FACTOR; } /* return the distance in meters in North/East plane as a N/E vector from loc1 to loc2 */ Vector2f Location::get_distance_NE(const Location &loc2) const { return Vector2f((loc2.lat - lat) * LOCATION_SCALING_FACTOR, (loc2.lng - lng) * LOCATION_SCALING_FACTOR * longitude_scale()); } // return the distance in meters in North/East/Down plane as a N/E/D vector to loc2 Vector3f Location::get_distance_NED(const Location &loc2) const { return Vector3f((loc2.lat - lat) * LOCATION_SCALING_FACTOR, (loc2.lng - lng) * LOCATION_SCALING_FACTOR * longitude_scale(), (alt - loc2.alt) * 0.01f); } // extrapolate latitude/longitude given distances (in meters) north and east void Location::offset(float ofs_north, float ofs_east) { const int32_t dlat = ofs_north * LOCATION_SCALING_FACTOR_INV; const int32_t dlng = (ofs_east * LOCATION_SCALING_FACTOR_INV) / longitude_scale(); lat += dlat; lng += dlng; } /* * extrapolate latitude/longitude given bearing and distance * Note that this function is accurate to about 1mm at a distance of * 100m. This function has the advantage that it works in relative * positions, so it keeps the accuracy even when dealing with small * distances and floating point numbers */ void Location::offset_bearing(float bearing, float distance) { const float ofs_north = cosf(radians(bearing)) * distance; const float ofs_east = sinf(radians(bearing)) * distance; offset(ofs_north, ofs_east); } // extrapolate latitude/longitude given bearing, pitch and distance void Location::offset_bearing_and_pitch(float bearing, float pitch, float distance) { const float ofs_north = cosf(radians(pitch)) * cosf(radians(bearing)) * distance; const float ofs_east = cosf(radians(pitch)) * sinf(radians(bearing)) * distance; offset(ofs_north, ofs_east); const int32_t dalt = sinf(radians(pitch)) * distance *100.0f; alt += dalt; } float Location::longitude_scale() const { float scale = cosf(lat * (1.0e-7f * DEG_TO_RAD)); return MAX(scale, 0.01f); } /* * convert invalid waypoint with useful data. return true if location changed */ bool Location::sanitize(const Location &defaultLoc) { bool has_changed = false; // convert lat/lng=0 to mean current point if (lat == 0 && lng == 0) { lat = defaultLoc.lat; lng = defaultLoc.lng; has_changed = true; } // convert relative alt=0 to mean current alt if (alt == 0 && relative_alt) { relative_alt = false; alt = defaultLoc.alt; has_changed = true; } // limit lat/lng to appropriate ranges if (!check_latlng()) { lat = defaultLoc.lat; lng = defaultLoc.lng; has_changed = true; } return has_changed; } // make sure we know what size the Location object is: assert_storage_size _assert_storage_size_Location; // return bearing in centi-degrees from location to loc2 int32_t Location::get_bearing_to(const struct Location &loc2) const { const int32_t off_x = loc2.lng - lng; const int32_t off_y = (loc2.lat - lat) / loc2.longitude_scale(); int32_t bearing = 9000 + atan2f(-off_y, off_x) * DEGX100; if (bearing < 0) { bearing += 36000; } return bearing; } /* return true if lat and lng match. Ignores altitude and options */ bool Location::same_latlon_as(const Location &loc2) const { return (lat == loc2.lat) && (lng == loc2.lng); } // return true when lat and lng are within range bool Location::check_latlng() const { return check_lat(lat) && check_lng(lng); } // see if location is past a line perpendicular to // the line between point1 and point2 and passing through point2. // If point1 is our previous waypoint and point2 is our target waypoint // then this function returns true if we have flown past // the target waypoint bool Location::past_interval_finish_line(const Location &point1, const Location &point2) const { return this->line_path_proportion(point1, point2) >= 1.0f; } /* return the proportion we are along the path from point1 to point2, along a line parallel to point1<->point2. This will be more than 1 if we have passed point2 */ float Location::line_path_proportion(const Location &point1, const Location &point2) const { const Vector2f vec1 = point1.get_distance_NE(point2); const Vector2f vec2 = point1.get_distance_NE(*this); const float dsquared = sq(vec1.x) + sq(vec1.y); if (dsquared < 0.001f) { // the two points are very close together return 1.0f; } return (vec1 * vec2) / dsquared; }