/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* rover simulator class */ #include "SIM_Rover.h" #include #include namespace SITL { SimRover::SimRover(const char *frame_str) : Aircraft(frame_str) { skid_steering = strstr(frame_str, "skid") != nullptr; if (skid_steering) { printf("SKID Steering Rover Simulation Started\n"); // these are taken from a 6V wild thumper with skid steering, // with a sabertooth controller max_accel = 14; max_speed = 4; return; } vectored_thrust = strstr(frame_str, "vector") != nullptr; if (vectored_thrust) { printf("Vectored Thrust Rover Simulation Started\n"); } lock_step_scheduled = true; } /* return turning circle (diameter) in meters for steering angle proportion in degrees */ float SimRover::turn_circle(float steering) const { if (fabsf(steering) < 1.0e-6) { return 0; } return turning_circle * sinf(radians(max_wheel_turn)) / sinf(radians(steering*max_wheel_turn)); } /* return yaw rate in degrees/second given steering_angle and speed */ float SimRover::calc_yaw_rate(float steering, float speed) { if (skid_steering) { return steering * skid_turn_rate; } if (vectored_thrust) { return steering * vectored_turn_rate_max; } if (fabsf(steering) < 1.0e-6 or fabsf(speed) < 1.0e-6) { return 0; } float d = turn_circle(steering); float c = M_PI * d; float t = c / speed; float rate = 360.0f / t; return rate; } /* return lateral acceleration in m/s/s */ float SimRover::calc_lat_accel(float steering_angle, float speed) { float yaw_rate = calc_yaw_rate(steering_angle, speed); float accel = radians(yaw_rate) * speed; return accel; } /* update the rover simulation by one time step */ void SimRover::update(const struct sitl_input &input) { float steering, throttle; // if in skid steering mode the steering and throttle values are used for motor1 and motor2 if (skid_steering) { float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f); float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f); steering = motor1 - motor2; throttle = 0.5*(motor1 + motor2); } else { steering = 2*((input.servos[0]-1000)/1000.0f - 0.5f); throttle = 2*((input.servos[2]-1000)/1000.0f - 0.5f); // vectored thrust conversion if (vectored_thrust) { const float steering_angle_rad = radians(steering * vectored_angle_max); steering = sinf(steering_angle_rad) * throttle; throttle *= cosf(steering_angle_rad); } } // how much time has passed? float delta_time = frame_time_us * 1.0e-6f; // speed in m/s in body frame Vector3f velocity_body = dcm.transposed() * velocity_ef; // speed along x axis, +ve is forward float speed = velocity_body.x; // yaw rate in degrees/s float yaw_rate = calc_yaw_rate(steering, speed); // target speed with current throttle float target_speed = throttle * max_speed; // linear acceleration in m/s/s - very crude model float accel = max_accel * (target_speed - speed) / max_speed; gyro = Vector3f(0,0,radians(yaw_rate)); // update attitude dcm.rotate(gyro * delta_time); dcm.normalize(); // accel in body frame due to motor accel_body = Vector3f(accel, 0, 0); // add in accel due to direction change accel_body.y += radians(yaw_rate) * speed; // now in earth frame Vector3f accel_earth = dcm * accel_body; accel_earth += Vector3f(0, 0, GRAVITY_MSS); // we are on the ground, so our vertical accel is zero accel_earth.z = 0; // work out acceleration as seen by the accelerometers. It sees the kinematic // acceleration (ie. real movement), plus gravity accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS)); // new velocity vector velocity_ef += accel_earth * delta_time; // new position vector position += velocity_ef * delta_time; update_external_payload(input); // update lat/lon/altitude update_position(); time_advance(); // update magnetic field update_mag_field_bf(); } } // namespace SITL