#include "Copter.h" #define ARM_DELAY 20 // called at 10hz so 2 seconds #define DISARM_DELAY 20 // called at 10hz so 2 seconds #define AUTO_TRIM_DELAY 100 // called at 10hz so 10 seconds #define LOST_VEHICLE_DELAY 10 // called at 10hz so 1 second static uint32_t auto_disarm_begin; // arm_motors_check - checks for pilot input to arm or disarm the copter // called at 10hz void Copter::arm_motors_check() { static int16_t arming_counter; // check if arming/disarm using rudder is allowed AP_Arming::RudderArming arming_rudder = arming.get_rudder_arming_type(); if (arming_rudder == AP_Arming::RudderArming::IS_DISABLED) { return; } #if TOY_MODE_ENABLED == ENABLED if (g2.toy_mode.enabled()) { // not armed with sticks in toy mode return; } #endif // ensure throttle is down if (channel_throttle->get_control_in() > 0) { arming_counter = 0; return; } int16_t yaw_in = channel_yaw->get_control_in(); // full right if (yaw_in > 4000) { // increase the arming counter to a maximum of 1 beyond the auto trim counter if (arming_counter <= AUTO_TRIM_DELAY) { arming_counter++; } // arm the motors and configure for flight if (arming_counter == ARM_DELAY && !motors->armed()) { // reset arming counter if arming fail if (!init_arm_motors(AP_Arming::Method::RUDDER)) { arming_counter = 0; } } // arm the motors and configure for flight if (arming_counter == AUTO_TRIM_DELAY && motors->armed() && control_mode == STABILIZE) { auto_trim_counter = 250; // ensure auto-disarm doesn't trigger immediately auto_disarm_begin = millis(); } // full left and rudder disarming is enabled } else if ((yaw_in < -4000) && (arming_rudder == AP_Arming::RudderArming::ARMDISARM)) { if (!flightmode->has_manual_throttle() && !ap.land_complete) { arming_counter = 0; return; } // increase the counter to a maximum of 1 beyond the disarm delay if (arming_counter <= DISARM_DELAY) { arming_counter++; } // disarm the motors if (arming_counter == DISARM_DELAY && motors->armed()) { init_disarm_motors(); } // Yaw is centered so reset arming counter } else { arming_counter = 0; } } // auto_disarm_check - disarms the copter if it has been sitting on the ground in manual mode with throttle low for at least 15 seconds void Copter::auto_disarm_check() { uint32_t tnow_ms = millis(); uint32_t disarm_delay_ms = 1000*constrain_int16(g.disarm_delay, 0, 127); // exit immediately if we are already disarmed, or if auto // disarming is disabled if (!motors->armed() || disarm_delay_ms == 0 || control_mode == THROW) { auto_disarm_begin = tnow_ms; return; } // if the rotor is still spinning, don't initiate auto disarm if (motors->get_spool_mode() != AP_Motors::GROUND_IDLE) { auto_disarm_begin = tnow_ms; return; } // always allow auto disarm if using interlock switch or motors are Emergency Stopped if ((ap.using_interlock && !motors->get_interlock()) || SRV_Channels::get_emergency_stop()) { #if FRAME_CONFIG != HELI_FRAME // use a shorter delay if using throttle interlock switch or Emergency Stop, because it is less // obvious the copter is armed as the motors will not be spinning disarm_delay_ms /= 2; #endif } else { bool sprung_throttle_stick = (g.throttle_behavior & THR_BEHAVE_FEEDBACK_FROM_MID_STICK) != 0; bool thr_low; if (flightmode->has_manual_throttle() || !sprung_throttle_stick) { thr_low = ap.throttle_zero; } else { float deadband_top = get_throttle_mid() + g.throttle_deadzone; thr_low = channel_throttle->get_control_in() <= deadband_top; } if (!thr_low || !ap.land_complete) { // reset timer auto_disarm_begin = tnow_ms; } } // disarm once timer expires if ((tnow_ms-auto_disarm_begin) >= disarm_delay_ms) { init_disarm_motors(); auto_disarm_begin = tnow_ms; } } // init_arm_motors - performs arming process including initialisation of barometer and gyros // returns false if arming failed because of pre-arm checks, arming checks or a gyro calibration failure bool Copter::init_arm_motors(const AP_Arming::Method method, const bool do_arming_checks) { static bool in_arm_motors = false; // exit immediately if already in this function if (in_arm_motors) { return false; } in_arm_motors = true; // return true if already armed if (motors->armed()) { in_arm_motors = false; return true; } // run pre-arm-checks and display failures if (do_arming_checks && !arming.all_checks_passing(method)) { AP_Notify::events.arming_failed = true; in_arm_motors = false; return false; } // let logger know that we're armed (it may open logs e.g.) AP::logger().set_vehicle_armed(true); // disable cpu failsafe because initialising everything takes a while failsafe_disable(); // notify that arming will occur (we do this early to give plenty of warning) AP_Notify::flags.armed = true; // call notify update a few times to ensure the message gets out for (uint8_t i=0; i<=10; i++) { notify.update(); } #if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_SITL gcs().send_text(MAV_SEVERITY_INFO, "Arming motors"); #endif // Remember Orientation // -------------------- init_simple_bearing(); initial_armed_bearing = ahrs.yaw_sensor; if (!ahrs.home_is_set()) { // Reset EKF altitude if home hasn't been set yet (we use EKF altitude as substitute for alt above home) ahrs.resetHeightDatum(); Log_Write_Event(DATA_EKF_ALT_RESET); // we have reset height, so arming height is zero arming_altitude_m = 0; } else if (!ahrs.home_is_locked()) { // Reset home position if it has already been set before (but not locked) if (!set_home_to_current_location(false)) { // ignore failure } // remember the height when we armed arming_altitude_m = inertial_nav.get_altitude() * 0.01; } update_super_simple_bearing(false); // Reset SmartRTL return location. If activated, SmartRTL will ultimately try to land at this point #if MODE_SMARTRTL_ENABLED == ENABLED g2.smart_rtl.set_home(position_ok()); #endif // enable gps velocity based centrefugal force compensation ahrs.set_correct_centrifugal(true); hal.util->set_soft_armed(true); #if SPRAYER_ENABLED == ENABLED // turn off sprayer's test if on sprayer.test_pump(false); #endif // enable output to motors enable_motor_output(); // finally actually arm the motors motors->armed(true); Log_Write_Event(DATA_ARMED); // log flight mode in case it was changed while vehicle was disarmed logger.Write_Mode(control_mode, control_mode_reason); // re-enable failsafe failsafe_enable(); // perf monitor ignores delay due to arming scheduler.perf_info.ignore_this_loop(); // flag exiting this function in_arm_motors = false; // Log time stamp of arming event arm_time_ms = millis(); // Start the arming delay ap.in_arming_delay = true; // assumed armed without a arming, switch. Overridden in switches.cpp ap.armed_with_switch = false; // return success return true; } // init_disarm_motors - disarm motors void Copter::init_disarm_motors() { // return immediately if we are already disarmed if (!motors->armed()) { return; } #if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_SITL gcs().send_text(MAV_SEVERITY_INFO, "Disarming motors"); #endif // save compass offsets learned by the EKF if enabled if (ahrs.use_compass() && compass.get_learn_type() == Compass::LEARN_EKF) { for(uint8_t i=0; iarmed(false); #if MODE_AUTO_ENABLED == ENABLED // reset the mission mode_auto.mission.reset(); #endif AP::logger().set_vehicle_armed(false); // disable gps velocity based centrefugal force compensation ahrs.set_correct_centrifugal(false); hal.util->set_soft_armed(false); ap.in_arming_delay = false; } // motors_output - send output to motors library which will adjust and send to ESCs and servos void Copter::motors_output() { #if ADVANCED_FAILSAFE == ENABLED // this is to allow the failsafe module to deliberately crash // the vehicle. Only used in extreme circumstances to meet the // OBC rules if (g2.afs.should_crash_vehicle()) { g2.afs.terminate_vehicle(); if (!g2.afs.terminating_vehicle_via_landing()) { return; } // landing must continue to run the motors output } #endif // Update arming delay state if (ap.in_arming_delay && (!motors->armed() || millis()-arm_time_ms > ARMING_DELAY_SEC*1.0e3f || control_mode == THROW)) { ap.in_arming_delay = false; } // output any servo channels SRV_Channels::calc_pwm(); // cork now, so that all channel outputs happen at once SRV_Channels::cork(); // update output on any aux channels, for manual passthru SRV_Channels::output_ch_all(); // check if we are performing the motor test if (ap.motor_test) { motor_test_output(); } else { bool interlock = motors->armed() && !ap.in_arming_delay && (!ap.using_interlock || ap.motor_interlock_switch) && !SRV_Channels::get_emergency_stop(); if (!motors->get_interlock() && interlock) { motors->set_interlock(true); Log_Write_Event(DATA_MOTORS_INTERLOCK_ENABLED); } else if (motors->get_interlock() && !interlock) { motors->set_interlock(false); Log_Write_Event(DATA_MOTORS_INTERLOCK_DISABLED); } // send output signals to motors motors->output(); } // push all channels SRV_Channels::push(); } // check for pilot stick input to trigger lost vehicle alarm void Copter::lost_vehicle_check() { static uint8_t soundalarm_counter; // disable if aux switch is setup to vehicle alarm as the two could interfere if (rc().find_channel_for_option(RC_Channel::AUX_FUNC::LOST_VEHICLE_SOUND)) { return; } // ensure throttle is down, motors not armed, pitch and roll rc at max. Note: rc1=roll rc2=pitch if (ap.throttle_zero && !motors->armed() && (channel_roll->get_control_in() > 4000) && (channel_pitch->get_control_in() > 4000)) { if (soundalarm_counter >= LOST_VEHICLE_DELAY) { if (AP_Notify::flags.vehicle_lost == false) { AP_Notify::flags.vehicle_lost = true; gcs().send_text(MAV_SEVERITY_NOTICE,"Locate Copter alarm"); } } else { soundalarm_counter++; } } else { soundalarm_counter = 0; if (AP_Notify::flags.vehicle_lost == true) { AP_Notify::flags.vehicle_lost = false; } } }