/* Lead developers: Matthew Ridley and Andrew Tridgell Please contribute your ideas! See https://ardupilot.org/dev for details This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once //////////////////////////////////////////////////////////////////////////////// // Header includes //////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include // ArduPilot Mega Vector/Matrix math Library #include // ArduPilot Mega DCM Library #include // Filter library #include #include // main loop scheduler #include #include #include #include #include #include // statistics library #include // Battery monitor library // Configuration #include "config.h" #include "defines.h" #include "RC_Channel.h" #include "Parameters.h" #include "GCS_Mavlink.h" #include "GCS_Tracker.h" #include "AP_Arming.h" #if AP_SCRIPTING_ENABLED #include #endif #include "mode.h" class Tracker : public AP_Vehicle { public: friend class GCS_MAVLINK_Tracker; friend class GCS_Tracker; friend class Parameters; friend class ModeAuto; friend class ModeGuided; friend class Mode; Tracker(void); void arm_servos(); void disarm_servos(); private: Parameters g; uint32_t start_time_ms = 0; #if HAL_LOGGING_ENABLED AP_Logger logger; #endif /** antenna control channels */ RC_Channels_Tracker rc_channels; SRV_Channels servo_channels; LowPassFilterFloat yaw_servo_out_filt; LowPassFilterFloat pitch_servo_out_filt; bool yaw_servo_out_filt_init = false; bool pitch_servo_out_filt_init = false; GCS_Tracker _gcs; // avoid using this; use gcs() GCS_Tracker &gcs() { return _gcs; } AP_Stats stats; // Battery Sensors AP_BattMonitor battery{MASK_LOG_CURRENT, FUNCTOR_BIND_MEMBER(&Tracker::handle_battery_failsafe, void, const char*, const int8_t), nullptr}; Location current_loc; Mode *mode_from_mode_num(enum Mode::Number num); Mode *mode = &mode_initialising; ModeAuto mode_auto; ModeInitialising mode_initialising; ModeManual mode_manual; ModeGuided mode_guided; ModeScan mode_scan; ModeServoTest mode_servotest; ModeStop mode_stop; #if AP_SCRIPTING_ENABLED AP_Scripting scripting; #endif // Vehicle state struct { bool location_valid; // true if we have a valid location for the vehicle Location location; // lat, long in degrees * 10^7; alt in meters * 100 Location location_estimate; // lat, long in degrees * 10^7; alt in meters * 100 uint32_t last_update_us; // last position update in microseconds uint32_t last_update_ms; // last position update in milliseconds Vector3f vel; // the vehicle's velocity in m/s int32_t relative_alt; // the vehicle's relative altitude in meters * 100 } vehicle; // Navigation controller state struct NavStatus { float bearing; // bearing to vehicle in centi-degrees float distance; // distance to vehicle in meters float pitch; // pitch to vehicle in degrees (positive means vehicle is above tracker, negative means below) float angle_error_pitch; // angle error between target and current pitch in centi-degrees float angle_error_yaw; // angle error between target and current yaw in centi-degrees float alt_difference_baro; // altitude difference between tracker and vehicle in meters according to the barometer. positive value means vehicle is above tracker float alt_difference_gps; // altitude difference between tracker and vehicle in meters according to the gps. positive value means vehicle is above tracker float altitude_offset; // offset in meters which is added to tracker altitude to align altitude measurements with vehicle's barometer bool manual_control_yaw : 1;// true if tracker yaw is under manual control bool manual_control_pitch : 1;// true if tracker pitch is manually controlled bool need_altitude_calibration : 1;// true if tracker altitude has not been determined (true after startup) bool scan_reverse_pitch : 1;// controls direction of pitch movement in SCAN mode bool scan_reverse_yaw : 1;// controls direction of yaw movement in SCAN mode } nav_status; // setup the var_info table AP_Param param_loader{var_info}; bool target_set = false; bool stationary = true; // are we using the start lat and log? static const AP_Scheduler::Task scheduler_tasks[]; static const AP_Param::Info var_info[]; static const struct LogStructure log_structure[]; // Tracker.cpp void get_scheduler_tasks(const AP_Scheduler::Task *&tasks, uint8_t &task_count, uint32_t &log_bit) override; void one_second_loop(); void ten_hz_logging_loop(); void stats_update(); // GCS_Mavlink.cpp void send_nav_controller_output(mavlink_channel_t chan); // Log.cpp void Log_Write_Attitude(); void Log_Write_Vehicle_Baro(float pressure, float altitude); void Log_Write_Vehicle_Pos(int32_t lat,int32_t lng,int32_t alt, const Vector3f& vel); void Log_Write_Vehicle_Startup_Messages(); void log_init(void); // Parameters.cpp void load_parameters(void) override; // radio.cpp void read_radio(); // sensors.cpp void update_ahrs(); void compass_save(); void update_compass(void); void update_GPS(void); void handle_battery_failsafe(const char* type_str, const int8_t action); // servos.cpp void init_servos(); void update_pitch_servo(float pitch); void update_pitch_position_servo(void); void update_pitch_onoff_servo(float pitch) const; void update_pitch_cr_servo(float pitch); void update_yaw_servo(float yaw); void update_yaw_position_servo(void); void update_yaw_onoff_servo(float yaw) const; void update_yaw_cr_servo(float yaw); // system.cpp void init_ardupilot() override; bool get_home_eeprom(Location &loc) const; bool set_home_eeprom(const Location &temp) WARN_IF_UNUSED; bool set_home(const Location &temp) WARN_IF_UNUSED; void prepare_servos(); void set_mode(Mode &newmode, ModeReason reason); bool set_mode(uint8_t new_mode, ModeReason reason) override; uint8_t get_mode() const override { return (uint8_t)mode->number(); } bool should_log(uint32_t mask); bool start_command_callback(const AP_Mission::Mission_Command& cmd) { return false; } void exit_mission_callback() { return; } bool verify_command_callback(const AP_Mission::Mission_Command& cmd) { return false; } // tracking.cpp void update_vehicle_pos_estimate(); void update_tracker_position(); void update_bearing_and_distance(); void update_tracking(void); void tracking_update_position(const mavlink_global_position_int_t &msg); void tracking_update_pressure(const mavlink_scaled_pressure_t &msg); void tracking_manual_control(const mavlink_manual_control_t &msg); void update_armed_disarmed() const; bool get_pan_tilt_norm(float &pan_norm, float &tilt_norm) const override; // Arming/Disarming management class AP_Arming_Tracker arming; // Mission library AP_Mission mission{ FUNCTOR_BIND_MEMBER(&Tracker::start_command_callback, bool, const AP_Mission::Mission_Command &), FUNCTOR_BIND_MEMBER(&Tracker::verify_command_callback, bool, const AP_Mission::Mission_Command &), FUNCTOR_BIND_MEMBER(&Tracker::exit_mission_callback, void)}; }; extern Tracker tracker;