#include #if HAL_WITH_UAVCAN #include "AP_Baro_UAVCAN.h" #include #include #include #include extern const AP_HAL::HAL& hal; #define debug_baro_uavcan(level_debug, can_driver, fmt, args...) do { if ((level_debug) <= AP::can().get_debug_level_driver(can_driver)) { printf(fmt, ##args); }} while (0) //UAVCAN Frontend Registry Binder UC_REGISTRY_BINDER(PressureCb, uavcan::equipment::air_data::StaticPressure); UC_REGISTRY_BINDER(TemperatureCb, uavcan::equipment::air_data::StaticTemperature); AP_Baro_UAVCAN::DetectedModules AP_Baro_UAVCAN::_detected_modules[] = {0}; HAL_Semaphore AP_Baro_UAVCAN::_sem_registry; /* constructor - registers instance at top Baro driver */ AP_Baro_UAVCAN::AP_Baro_UAVCAN(AP_Baro &baro) : AP_Baro_Backend(baro) {} void AP_Baro_UAVCAN::subscribe_msgs(AP_UAVCAN* ap_uavcan) { if (ap_uavcan == nullptr) { return; } auto* node = ap_uavcan->get_node(); uavcan::Subscriber *pressure_listener; pressure_listener = new uavcan::Subscriber(*node); // Msg Handler const int pressure_listener_res = pressure_listener->start(PressureCb(ap_uavcan, &handle_pressure)); if (pressure_listener_res < 0) { AP_HAL::panic("UAVCAN Baro subscriber start problem\n\r"); return; } uavcan::Subscriber *temperature_listener; temperature_listener = new uavcan::Subscriber(*node); // Msg Handler const int temperature_listener_res = temperature_listener->start(TemperatureCb(ap_uavcan, &handle_temperature)); if (temperature_listener_res < 0) { AP_HAL::panic("UAVCAN Baro subscriber start problem\n\r"); return; } } AP_Baro_Backend* AP_Baro_UAVCAN::probe(AP_Baro &baro) { WITH_SEMAPHORE(_sem_registry); AP_Baro_UAVCAN* backend = nullptr; for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) { if (_detected_modules[i].driver == nullptr && _detected_modules[i].ap_uavcan != nullptr) { backend = new AP_Baro_UAVCAN(baro); if (backend == nullptr) { debug_baro_uavcan(2, _detected_modules[i].ap_uavcan->get_driver_index(), "Failed register UAVCAN Baro Node %d on Bus %d\n", _detected_modules[i].node_id, _detected_modules[i].ap_uavcan->get_driver_index()); } else { _detected_modules[i].driver = backend; backend->_pressure = 0; backend->_pressure_count = 0; backend->_ap_uavcan = _detected_modules[i].ap_uavcan; backend->_node_id = _detected_modules[i].node_id; backend->_instance = backend->_frontend.register_sensor(); backend->set_bus_id(backend->_instance, AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_UAVCAN, _detected_modules[i].ap_uavcan->get_driver_index(), backend->_node_id, 0)); debug_baro_uavcan(2, _detected_modules[i].ap_uavcan->get_driver_index(), "Registered UAVCAN Baro Node %d on Bus %d\n", _detected_modules[i].node_id, _detected_modules[i].ap_uavcan->get_driver_index()); } break; } } return backend; } AP_Baro_UAVCAN* AP_Baro_UAVCAN::get_uavcan_backend(AP_UAVCAN* ap_uavcan, uint8_t node_id, bool create_new) { if (ap_uavcan == nullptr) { return nullptr; } for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) { if (_detected_modules[i].driver != nullptr && _detected_modules[i].ap_uavcan == ap_uavcan && _detected_modules[i].node_id == node_id) { return _detected_modules[i].driver; } } if (create_new) { bool already_detected = false; //Check if there's an empty spot for possible registeration for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) { if (_detected_modules[i].ap_uavcan == ap_uavcan && _detected_modules[i].node_id == node_id) { //Already Detected already_detected = true; break; } } if (!already_detected) { for (uint8_t i = 0; i < BARO_MAX_DRIVERS; i++) { if (_detected_modules[i].ap_uavcan == nullptr) { _detected_modules[i].ap_uavcan = ap_uavcan; _detected_modules[i].node_id = node_id; break; } } } } return nullptr; } void AP_Baro_UAVCAN::_update_and_wrap_accumulator(float *accum, float val, uint8_t *count, const uint8_t max_count) { *accum += val; *count += 1; if (*count == max_count) { *count = max_count / 2; *accum = *accum / 2; } } void AP_Baro_UAVCAN::handle_pressure(AP_UAVCAN* ap_uavcan, uint8_t node_id, const PressureCb &cb) { AP_Baro_UAVCAN* driver; { WITH_SEMAPHORE(_sem_registry); driver = get_uavcan_backend(ap_uavcan, node_id, true); if (driver == nullptr) { return; } } { WITH_SEMAPHORE(driver->_sem_baro); _update_and_wrap_accumulator(&driver->_pressure, cb.msg->static_pressure, &driver->_pressure_count, 32); driver->new_pressure = true; } } void AP_Baro_UAVCAN::handle_temperature(AP_UAVCAN* ap_uavcan, uint8_t node_id, const TemperatureCb &cb) { AP_Baro_UAVCAN* driver; { WITH_SEMAPHORE(_sem_registry); driver = get_uavcan_backend(ap_uavcan, node_id, false); if (driver == nullptr) { return; } } { WITH_SEMAPHORE(driver->_sem_baro); driver->_temperature = cb.msg->static_temperature - C_TO_KELVIN; } } // Read the sensor void AP_Baro_UAVCAN::update(void) { float pressure = 0; WITH_SEMAPHORE(_sem_baro); if (new_pressure) { if (_pressure_count != 0) { pressure = _pressure / _pressure_count; _pressure_count = 0; _pressure = 0; } _copy_to_frontend(_instance, pressure, _temperature); _frontend.set_external_temperature(_temperature); new_pressure = false; } } #endif // HAL_WITH_UAVCAN