/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AC_Avoid.h" #include // AHRS library #include // Failsafe fence library #include #include #include #if APM_BUILD_TYPE(APM_BUILD_Rover) # define AP_AVOID_BEHAVE_DEFAULT AC_Avoid::BehaviourType::BEHAVIOR_STOP #else # define AP_AVOID_BEHAVE_DEFAULT AC_Avoid::BehaviourType::BEHAVIOR_SLIDE #endif const AP_Param::GroupInfo AC_Avoid::var_info[] = { // @Param: ENABLE // @DisplayName: Avoidance control enable/disable // @Description: Enabled/disable avoidance input sources // @Values: 0:None,1:UseFence,2:UseProximitySensor,3:UseFence and UseProximitySensor,4:UseBeaconFence,7:All // @Bitmask: 0:UseFence,1:UseProximitySensor,2:UseBeaconFence // @User: Standard AP_GROUPINFO("ENABLE", 1, AC_Avoid, _enabled, AC_AVOID_DEFAULT), // @Param{Copter}: ANGLE_MAX // @DisplayName: Avoidance max lean angle in non-GPS flight modes // @Description: Max lean angle used to avoid obstacles while in non-GPS modes // @Units: cdeg // @Range: 0 4500 // @User: Standard AP_GROUPINFO_FRAME("ANGLE_MAX", 2, AC_Avoid, _angle_max, 1000, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER), // @Param{Copter}: DIST_MAX // @DisplayName: Avoidance distance maximum in non-GPS flight modes // @Description: Distance from object at which obstacle avoidance will begin in non-GPS modes // @Units: m // @Range: 1 30 // @User: Standard AP_GROUPINFO_FRAME("DIST_MAX", 3, AC_Avoid, _dist_max, AC_AVOID_NONGPS_DIST_MAX_DEFAULT, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER), // @Param: MARGIN // @DisplayName: Avoidance distance margin in GPS modes // @Description: Vehicle will attempt to stay at least this distance (in meters) from objects while in GPS modes // @Units: m // @Range: 1 10 // @User: Standard AP_GROUPINFO("MARGIN", 4, AC_Avoid, _margin, 2.0f), // @Param{Copter}: BEHAVE // @DisplayName: Avoidance behaviour // @Description: Avoidance behaviour (slide or stop) // @Values: 0:Slide,1:Stop // @User: Standard AP_GROUPINFO_FRAME("BEHAVE", 5, AC_Avoid, _behavior, AP_AVOID_BEHAVE_DEFAULT, AP_PARAM_FRAME_COPTER | AP_PARAM_FRAME_HELI | AP_PARAM_FRAME_TRICOPTER), AP_GROUPEND }; /// Constructor AC_Avoid::AC_Avoid() { _singleton = this; AP_Param::setup_object_defaults(this, var_info); } void AC_Avoid::adjust_velocity(float kP, float accel_cmss, Vector2f &desired_vel_cms, float dt) { // exit immediately if disabled if (_enabled == AC_AVOID_DISABLED) { return; } // limit acceleration const float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX); if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0) { adjust_velocity_circle_fence(kP, accel_cmss_limited, desired_vel_cms, dt); adjust_velocity_inclusion_and_exclusion_polygons(kP, accel_cmss_limited, desired_vel_cms, dt); adjust_velocity_inclusion_circles(kP, accel_cmss_limited, desired_vel_cms, dt); adjust_velocity_exclusion_circles(kP, accel_cmss_limited, desired_vel_cms, dt); } if ((_enabled & AC_AVOID_STOP_AT_BEACON_FENCE) > 0) { adjust_velocity_beacon_fence(kP, accel_cmss_limited, desired_vel_cms, dt); } if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) > 0 && _proximity_enabled) { adjust_velocity_proximity(kP, accel_cmss_limited, desired_vel_cms, dt); } } // convenience function to accept Vector3f. Only x and y are adjusted void AC_Avoid::adjust_velocity(float kP, float accel_cmss, Vector3f &desired_vel_cms, float dt) { Vector2f des_vel_xy(desired_vel_cms.x, desired_vel_cms.y); adjust_velocity(kP, accel_cmss, des_vel_xy, dt); desired_vel_cms.x = des_vel_xy.x; desired_vel_cms.y = des_vel_xy.y; } // adjust desired horizontal speed so that the vehicle stops before the fence or object // accel (maximum acceleration/deceleration) is in m/s/s // heading is in radians // speed is in m/s // kP should be zero for linear response, non-zero for non-linear response void AC_Avoid::adjust_speed(float kP, float accel, float heading, float &speed, float dt) { // convert heading and speed into velocity vector Vector2f vel_xy; vel_xy.x = cosf(heading) * speed * 100.0f; vel_xy.y = sinf(heading) * speed * 100.0f; adjust_velocity(kP, accel * 100.0f, vel_xy, dt); // adjust speed towards zero if (is_negative(speed)) { speed = -vel_xy.length() * 0.01f; } else { speed = vel_xy.length() * 0.01f; } } // adjust vertical climb rate so vehicle does not break the vertical fence void AC_Avoid::adjust_velocity_z(float kP, float accel_cmss, float& climb_rate_cms, float dt) { // exit immediately if disabled if (_enabled == AC_AVOID_DISABLED) { return; } // do not adjust climb_rate if level or descending if (climb_rate_cms <= 0.0f) { return; } // limit acceleration const float accel_cmss_limited = MIN(accel_cmss, AC_AVOID_ACCEL_CMSS_MAX); bool limit_alt = false; float alt_diff = 0.0f; // distance from altitude limit to vehicle in metres (positive means vehicle is below limit) const AP_AHRS &_ahrs = AP::ahrs(); // calculate distance below fence AC_Fence *fence = AP::fence(); if ((_enabled & AC_AVOID_STOP_AT_FENCE) > 0 && fence && (fence->get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) > 0) { // calculate distance from vehicle to safe altitude float veh_alt; _ahrs.get_relative_position_D_home(veh_alt); // _fence.get_safe_alt_max() is UP, veh_alt is DOWN: alt_diff = fence->get_safe_alt_max() + veh_alt; limit_alt = true; } // calculate distance to (e.g.) optical flow altitude limit // AHRS values are always in metres float alt_limit; float curr_alt; if (_ahrs.get_hgt_ctrl_limit(alt_limit) && _ahrs.get_relative_position_D_origin(curr_alt)) { // alt_limit is UP, curr_alt is DOWN: const float ctrl_alt_diff = alt_limit + curr_alt; if (!limit_alt || ctrl_alt_diff < alt_diff) { alt_diff = ctrl_alt_diff; limit_alt = true; } } // get distance from proximity sensor float proximity_alt_diff; AP_Proximity *proximity = AP::proximity(); if (proximity && proximity->get_upward_distance(proximity_alt_diff)) { proximity_alt_diff -= _margin; if (!limit_alt || proximity_alt_diff < alt_diff) { alt_diff = proximity_alt_diff; limit_alt = true; } } // limit climb rate if (limit_alt) { // do not allow climbing if we've breached the safe altitude if (alt_diff <= 0.0f) { climb_rate_cms = MIN(climb_rate_cms, 0.0f); return; } // limit climb rate const float max_speed = get_max_speed(kP, accel_cmss_limited, alt_diff*100.0f, dt); climb_rate_cms = MIN(max_speed, climb_rate_cms); _last_limit_time = AP_HAL::millis(); } } // adjust roll-pitch to push vehicle away from objects // roll and pitch value are in centi-degrees void AC_Avoid::adjust_roll_pitch(float &roll, float &pitch, float veh_angle_max) { // exit immediately if proximity based avoidance is disabled if ((_enabled & AC_AVOID_USE_PROXIMITY_SENSOR) == 0 || !_proximity_enabled) { return; } // exit immediately if angle max is zero if (_angle_max <= 0.0f || veh_angle_max <= 0.0f) { return; } float roll_positive = 0.0f; // maximum positive roll value float roll_negative = 0.0f; // minimum negative roll value float pitch_positive = 0.0f; // maximum positive pitch value float pitch_negative = 0.0f; // minimum negative pitch value // get maximum positive and negative roll and pitch percentages from proximity sensor get_proximity_roll_pitch_pct(roll_positive, roll_negative, pitch_positive, pitch_negative); // add maximum positive and negative percentages together for roll and pitch, convert to centi-degrees Vector2f rp_out((roll_positive + roll_negative) * 4500.0f, (pitch_positive + pitch_negative) * 4500.0f); // apply avoidance angular limits // the object avoidance lean angle is never more than 75% of the total angle-limit to allow the pilot to override const float angle_limit = constrain_float(_angle_max, 0.0f, veh_angle_max * AC_AVOID_ANGLE_MAX_PERCENT); float vec_len = rp_out.length(); if (vec_len > angle_limit) { rp_out *= (angle_limit / vec_len); } // add passed in roll, pitch angles rp_out.x += roll; rp_out.y += pitch; // apply total angular limits vec_len = rp_out.length(); if (vec_len > veh_angle_max) { rp_out *= (veh_angle_max / vec_len); } // return adjusted roll, pitch roll = rp_out.x; pitch = rp_out.y; } /* * Limits the component of desired_vel_cms in the direction of the unit vector * limit_direction to be at most the maximum speed permitted by the limit_distance_cm. * * Uses velocity adjustment idea from Randy's second email on this thread: * https://groups.google.com/forum/#!searchin/drones-discuss/obstacle/drones-discuss/QwUXz__WuqY/qo3G8iTLSJAJ */ void AC_Avoid::limit_velocity(float kP, float accel_cmss, Vector2f &desired_vel_cms, const Vector2f& limit_direction, float limit_distance_cm, float dt) { const float max_speed = get_max_speed(kP, accel_cmss, limit_distance_cm, dt); // project onto limit direction const float speed = desired_vel_cms * limit_direction; if (speed > max_speed) { // subtract difference between desired speed and maximum acceptable speed desired_vel_cms += limit_direction*(max_speed - speed); _last_limit_time = AP_HAL::millis(); } } /* * Computes the speed such that the stopping distance * of the vehicle will be exactly the input distance. */ float AC_Avoid::get_max_speed(float kP, float accel_cmss, float distance_cm, float dt) const { if (is_zero(kP)) { return safe_sqrt(2.0f * distance_cm * accel_cmss); } else { return AC_AttitudeControl::sqrt_controller(distance_cm, kP, accel_cmss, dt); } } /* * Adjusts the desired velocity for the circular fence. */ void AC_Avoid::adjust_velocity_circle_fence(float kP, float accel_cmss, Vector2f &desired_vel_cms, float dt) { AC_Fence *fence = AP::fence(); if (fence == nullptr) { return; } AC_Fence &_fence = *fence; // exit if circular fence is not enabled if ((_fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) == 0) { return; } // exit if the circular fence has already been breached if ((_fence.get_breaches() & AC_FENCE_TYPE_CIRCLE) != 0) { return; } // get desired speed const float desired_speed = desired_vel_cms.length(); if (is_zero(desired_speed)) { // no avoidance necessary when desired speed is zero return; } const AP_AHRS &_ahrs = AP::ahrs(); // get position as a 2D offset from ahrs home Vector2f position_xy; if (!_ahrs.get_relative_position_NE_home(position_xy)) { // we have no idea where we are.... return; } position_xy *= 100.0f; // m -> cm // get the fence radius in cm const float fence_radius = _fence.get_radius() * 100.0f; // get the margin to the fence in cm const float margin_cm = _fence.get_margin() * 100.0f; // get vehicle distance from home const float dist_from_home = position_xy.length(); if (dist_from_home > fence_radius) { // outside of circular fence, no velocity adjustments return; } // vehicle is inside the circular fence if ((AC_Avoid::BehaviourType)_behavior.get() == BEHAVIOR_SLIDE) { // implement sliding behaviour const Vector2f stopping_point = position_xy + desired_vel_cms*(get_stopping_distance(kP, accel_cmss, desired_speed)/desired_speed); const float stopping_point_dist_from_home = stopping_point.length(); if (stopping_point_dist_from_home <= fence_radius - margin_cm) { // stopping before before fence so no need to adjust return; } // unsafe desired velocity - will not be able to stop before reaching margin from fence // Project stopping point radially onto fence boundary // Adjusted velocity will point towards this projected point at a safe speed const Vector2f target_offset = stopping_point * ((fence_radius - margin_cm) / stopping_point_dist_from_home); const Vector2f target_direction = target_offset - position_xy; const float distance_to_target = target_direction.length(); if (is_positive(distance_to_target)) { const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); desired_vel_cms = target_direction * (MIN(desired_speed,max_speed) / distance_to_target); _last_limit_time = AP_HAL::millis(); } } else { // implement stopping behaviour // calculate stopping point plus a margin so we look forward far enough to intersect with circular fence const Vector2f stopping_point_plus_margin = position_xy + desired_vel_cms*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, desired_speed))/desired_speed); const float stopping_point_plus_margin_dist_from_home = stopping_point_plus_margin.length(); if (dist_from_home >= fence_radius - margin_cm) { // vehicle has already breached margin around fence // if stopping point is even further from home (i.e. in wrong direction) then adjust speed to zero // otherwise user is backing away from fence so do not apply limits if (stopping_point_plus_margin_dist_from_home >= dist_from_home) { desired_vel_cms.zero(); _last_limit_time = AP_HAL::millis(); } } else { // shorten vector without adjusting its direction Vector2f intersection; if (Vector2f::circle_segment_intersection(position_xy, stopping_point_plus_margin, Vector2f(0.0f,0.0f), fence_radius - margin_cm, intersection)) { const float distance_to_target = (intersection - position_xy).length(); const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); if (max_speed < desired_speed) { desired_vel_cms *= MAX(max_speed, 0.0f) / desired_speed; _last_limit_time = AP_HAL::millis(); } } } } } /* * Adjusts the desired velocity for the exclusion polygons */ void AC_Avoid::adjust_velocity_inclusion_and_exclusion_polygons(float kP, float accel_cmss, Vector2f &desired_vel_cms, float dt) { const AC_Fence *fence = AP::fence(); if (fence == nullptr) { return; } // exit if polygon fences are not enabled if ((fence->get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) { return; } // iterate through inclusion polygons const uint8_t num_inclusion_polygons = fence->polyfence().get_inclusion_polygon_count(); for (uint8_t i = 0; i < num_inclusion_polygons; i++) { uint16_t num_points; const Vector2f* boundary = fence->polyfence().get_inclusion_polygon(i, num_points); // adjust velocity adjust_velocity_polygon(kP, accel_cmss, desired_vel_cms, boundary, num_points, true, fence->get_margin(), dt, true); } // iterate through exclusion polygons const uint8_t num_exclusion_polygons = fence->polyfence().get_exclusion_polygon_count(); for (uint8_t i = 0; i < num_exclusion_polygons; i++) { uint16_t num_points; const Vector2f* boundary = fence->polyfence().get_exclusion_polygon(i, num_points); // adjust velocity adjust_velocity_polygon(kP, accel_cmss, desired_vel_cms, boundary, num_points, true, fence->get_margin(), dt, false); } } /* * Adjusts the desired velocity for the inclusion circles */ void AC_Avoid::adjust_velocity_inclusion_circles(float kP, float accel_cmss, Vector2f &desired_vel_cms, float dt) { const AC_Fence *fence = AP::fence(); if (fence == nullptr) { return; } // return immediately if no inclusion circles const uint8_t num_circles = fence->polyfence().get_inclusion_circle_count(); if (num_circles == 0) { return; } // exit if polygon fences are not enabled if ((fence->get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) { return; } // get desired speed const float desired_speed = desired_vel_cms.length(); if (is_zero(desired_speed)) { // no avoidance necessary when desired speed is zero return; } // get vehicle position Vector2f position_NE; if (!AP::ahrs().get_relative_position_NE_origin(position_NE)) { // do not limit velocity if we don't have a position estimate return; } position_NE = position_NE * 100.0f; // m to cm // get the margin to the fence in cm const float margin_cm = fence->get_margin() * 100.0f; // get stopping distance as an offset from the vehicle Vector2f stopping_offset; switch ((AC_Avoid::BehaviourType)_behavior.get()) { case BEHAVIOR_SLIDE: stopping_offset = desired_vel_cms*(get_stopping_distance(kP, accel_cmss, desired_speed)/desired_speed); break; case BEHAVIOR_STOP: // calculate stopping point plus a margin so we look forward far enough to intersect with circular fence stopping_offset = desired_vel_cms*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, desired_speed))/desired_speed); break; } // iterate through inclusion circles for (uint8_t i = 0; i < num_circles; i++) { Vector2f center_pos_cm; float radius; if (fence->polyfence().get_inclusion_circle(i, center_pos_cm, radius)) { // get position relative to circle's center const Vector2f position_NE_rel = (position_NE - center_pos_cm); // if we are outside this circle do not limit velocity for this circle const float dist_sq_cm = position_NE_rel.length_squared(); const float radius_cm = (radius * 100.0f); if (dist_sq_cm > sq(radius_cm)) { continue; } switch ((AC_Avoid::BehaviourType)_behavior.get()) { case BEHAVIOR_SLIDE: { // implement sliding behaviour const Vector2f stopping_point = position_NE_rel + stopping_offset; const float stopping_point_dist = stopping_point.length(); if (is_zero(stopping_point_dist) || (stopping_point_dist <= (radius_cm - margin_cm))) { // stopping before before fence so no need to adjust for this circle continue; } // unsafe desired velocity - will not be able to stop before reaching margin from fence // project stopping point radially onto fence boundary // adjusted velocity will point towards this projected point at a safe speed const Vector2f target_offset = stopping_point * ((radius_cm - margin_cm) / stopping_point_dist); const Vector2f target_direction = target_offset - position_NE_rel; const float distance_to_target = target_direction.length(); if (is_positive(distance_to_target)) { const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); desired_vel_cms = target_direction * (MIN(desired_speed,max_speed) / distance_to_target); } } break; case BEHAVIOR_STOP: { // implement stopping behaviour const Vector2f stopping_point_plus_margin = position_NE_rel + stopping_offset; const float dist_cm = safe_sqrt(dist_sq_cm); if (dist_cm >= radius_cm - margin_cm) { // vehicle has already breached margin around fence // if stopping point is even further from center (i.e. in wrong direction) then adjust speed to zero // otherwise user is backing away from fence so do not apply limits if (stopping_point_plus_margin.length() >= dist_cm) { desired_vel_cms.zero(); return; } } else { // shorten vector without adjusting its direction Vector2f intersection; if (Vector2f::circle_segment_intersection(position_NE_rel, stopping_point_plus_margin, Vector2f(0.0f,0.0f), radius_cm - margin_cm, intersection)) { const float distance_to_target = (intersection - position_NE_rel).length(); const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); if (max_speed < desired_speed) { desired_vel_cms *= MAX(max_speed, 0.0f) / desired_speed; } } } } break; } } } } /* * Adjusts the desired velocity for the exclusion circles */ void AC_Avoid::adjust_velocity_exclusion_circles(float kP, float accel_cmss, Vector2f &desired_vel_cms, float dt) { const AC_Fence *fence = AP::fence(); if (fence == nullptr) { return; } // return immediately if no inclusion circles const uint8_t num_circles = fence->polyfence().get_exclusion_circle_count(); if (num_circles == 0) { return; } // exit if polygon fences are not enabled if ((fence->get_enabled_fences() & AC_FENCE_TYPE_POLYGON) == 0) { return; } // get desired speed const float desired_speed = desired_vel_cms.length(); if (is_zero(desired_speed)) { // no avoidance necessary when desired speed is zero return; } // get vehicle position Vector2f position_NE; if (!AP::ahrs().get_relative_position_NE_origin(position_NE)) { // do not limit velocity if we don't have a position estimate return; } position_NE = position_NE * 100.0f; // m to cm // get the margin to the fence in cm const float margin_cm = fence->get_margin() * 100.0f; // calculate stopping distance as an offset from the vehicle (only used for BEHAVIOR_STOP) // add a margin so we look forward far enough to intersect with circular fence Vector2f stopping_offset; if ((AC_Avoid::BehaviourType)_behavior.get() == BEHAVIOR_STOP) { stopping_offset = desired_vel_cms*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, desired_speed))/desired_speed); } // iterate through exclusion circles for (uint8_t i = 0; i < num_circles; i++) { Vector2f center_pos_cm; float radius; if (fence->polyfence().get_exclusion_circle(i, center_pos_cm, radius)) { // get position relative to circle's center const Vector2f position_NE_rel = (position_NE - center_pos_cm); // if we are inside this circle do not limit velocity for this circle const float dist_sq_cm = position_NE_rel.length_squared(); const float radius_cm = (radius * 100.0f); if (dist_sq_cm < sq(radius_cm)) { continue; } switch ((AC_Avoid::BehaviourType)_behavior.get()) { case BEHAVIOR_SLIDE: { // vector from current position to circle's center Vector2f limit_direction = center_pos_cm - position_NE; if (limit_direction.is_zero()) { // vehicle is exactly on circle center so do not limit velocity continue; } // calculate distance to edge of circle const float limit_distance_cm = limit_direction.length() - radius_cm; if (!is_positive(limit_distance_cm)) { // vehicle is within circle so do not limit velocity continue; } // vehicle is outside the circle, adjust velocity to stay outside limit_direction.normalize(); limit_velocity(kP, accel_cmss, desired_vel_cms, limit_direction, MAX(limit_distance_cm - margin_cm, 0.0f), dt); } break; case BEHAVIOR_STOP: { // implement stopping behaviour const Vector2f stopping_point_plus_margin = position_NE_rel + stopping_offset; const float dist_cm = safe_sqrt(dist_sq_cm); if (dist_cm < radius_cm + margin_cm) { // vehicle has already breached margin around fence // if stopping point is closer to center (i.e. in wrong direction) then adjust speed to zero // otherwise user is backing away from fence so do not apply limits if (stopping_point_plus_margin.length() <= dist_cm) { desired_vel_cms.zero(); return; } } else { // shorten vector without adjusting its direction Vector2f intersection; if (Vector2f::circle_segment_intersection(position_NE_rel, stopping_point_plus_margin, Vector2f(0.0f,0.0f), radius_cm + margin_cm, intersection)) { const float distance_to_target = (intersection - position_NE_rel).length(); const float max_speed = get_max_speed(kP, accel_cmss, distance_to_target, dt); if (max_speed < desired_speed) { desired_vel_cms *= MAX(max_speed, 0.0f) / desired_speed; } } } } break; } } } } /* * Adjusts the desired velocity for the beacon fence. */ void AC_Avoid::adjust_velocity_beacon_fence(float kP, float accel_cmss, Vector2f &desired_vel_cms, float dt) { AP_Beacon *_beacon = AP::beacon(); // exit if the beacon is not present if (_beacon == nullptr) { return; } // get boundary from beacons uint16_t num_points = 0; const Vector2f* boundary = _beacon->get_boundary_points(num_points); if ((boundary == nullptr) || (num_points == 0)) { return; } // adjust velocity using beacon float margin = 0; if (AP::fence()) { margin = AP::fence()->get_margin(); } adjust_velocity_polygon(kP, accel_cmss, desired_vel_cms, boundary, num_points, true, margin, dt, true); } /* * Adjusts the desired velocity based on output from the proximity sensor */ void AC_Avoid::adjust_velocity_proximity(float kP, float accel_cmss, Vector2f &desired_vel_cms, float dt) { // exit immediately if proximity sensor is not present AP_Proximity *proximity = AP::proximity(); if (!proximity) { return; } AP_Proximity &_proximity = *proximity; if (_proximity.get_status() != AP_Proximity::Status::Good) { return; } // get boundary from proximity sensor uint16_t num_points = 0; const Vector2f *boundary = _proximity.get_boundary_points(num_points); adjust_velocity_polygon(kP, accel_cmss, desired_vel_cms, boundary, num_points, false, _margin, dt, true); } /* * Adjusts the desired velocity for the polygon fence. */ void AC_Avoid::adjust_velocity_polygon(float kP, float accel_cmss, Vector2f &desired_vel_cms, const Vector2f* boundary, uint16_t num_points, bool earth_frame, float margin, float dt, bool stay_inside) { // exit if there are no points if (boundary == nullptr || num_points == 0) { return; } // exit immediately if no desired velocity if (desired_vel_cms.is_zero()) { return; } const AP_AHRS &_ahrs = AP::ahrs(); // do not adjust velocity if vehicle is outside the polygon fence Vector2f position_xy; if (earth_frame) { if (!_ahrs.get_relative_position_NE_origin(position_xy)) { // boundary is in earth frame but we have no idea // where we are return; } position_xy = position_xy * 100.0f; // m to cm } // return if we have already breached polygon const bool inside_polygon = !Polygon_outside(position_xy, boundary, num_points); if (inside_polygon != stay_inside) { return; } // Safe_vel will be adjusted to remain within fence. // We need a separate vector in case adjustment fails, // e.g. if we are exactly on the boundary. Vector2f safe_vel(desired_vel_cms); // if boundary points are in body-frame, rotate velocity vector from earth frame to body-frame if (!earth_frame) { safe_vel.x = desired_vel_cms.y * _ahrs.sin_yaw() + desired_vel_cms.x * _ahrs.cos_yaw(); // right safe_vel.y = desired_vel_cms.y * _ahrs.cos_yaw() - desired_vel_cms.x * _ahrs.sin_yaw(); // forward } // calc margin in cm const float margin_cm = MAX(margin * 100.0f, 0.0f); // for stopping const float speed = safe_vel.length(); const Vector2f stopping_point_plus_margin = position_xy + safe_vel*((2.0f + margin_cm + get_stopping_distance(kP, accel_cmss, speed))/speed); for (uint16_t i=0; i= num_points) { j = 0; } // end points of current edge Vector2f start = boundary[j]; Vector2f end = boundary[i]; if ((AC_Avoid::BehaviourType)_behavior.get() == BEHAVIOR_SLIDE) { // vector from current position to closest point on current edge Vector2f limit_direction = Vector2f::closest_point(position_xy, start, end) - position_xy; // distance to closest point const float limit_distance_cm = limit_direction.length(); if (!is_zero(limit_distance_cm)) { // We are strictly inside the given edge. // Adjust velocity to not violate this edge. limit_direction /= limit_distance_cm; limit_velocity(kP, accel_cmss, safe_vel, limit_direction, MAX(limit_distance_cm - margin_cm, 0.0f), dt); } else { // We are exactly on the edge - treat this as a fence breach. // i.e. do not adjust velocity. return; } } else { // find intersection with line segment Vector2f intersection; if (Vector2f::segment_intersection(position_xy, stopping_point_plus_margin, start, end, intersection)) { // vector from current position to point on current edge Vector2f limit_direction = intersection - position_xy; const float limit_distance_cm = limit_direction.length(); if (!is_zero(limit_distance_cm)) { if (limit_distance_cm <= margin_cm) { // we are within the margin so stop vehicle safe_vel.zero(); } else { // vehicle inside the given edge, adjust velocity to not violate this edge limit_direction /= limit_distance_cm; limit_velocity(kP, accel_cmss, safe_vel, limit_direction, MAX(limit_distance_cm - margin_cm, 0.0f), dt); } } else { // We are exactly on the edge - treat this as a fence breach. // i.e. do not adjust velocity. return; } } } } // set modified desired velocity vector if (earth_frame) { desired_vel_cms = safe_vel; } else { // if points were in body-frame, rotate resulting vector back to earth-frame desired_vel_cms.x = safe_vel.x * _ahrs.cos_yaw() - safe_vel.y * _ahrs.sin_yaw(); desired_vel_cms.y = safe_vel.x * _ahrs.sin_yaw() + safe_vel.y * _ahrs.cos_yaw(); } } /* * Computes distance required to stop, given current speed. * * Implementation copied from AC_PosControl. */ float AC_Avoid::get_stopping_distance(float kP, float accel_cmss, float speed_cms) const { // avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero if (accel_cmss <= 0.0f || is_zero(speed_cms)) { return 0.0f; } // handle linear deceleration if (kP <= 0.0f) { return 0.5f * sq(speed_cms) / accel_cmss; } // calculate distance within which we can stop // accel_cmss/kP is the point at which velocity switches from linear to sqrt if (speed_cms < accel_cmss/kP) { return speed_cms/kP; } else { // accel_cmss/(2.0f*kP*kP) is the distance at which we switch from linear to sqrt response return accel_cmss/(2.0f*kP*kP) + (speed_cms*speed_cms)/(2.0f*accel_cmss); } } // convert distance (in meters) to a lean percentage (in 0~1 range) for use in manual flight modes float AC_Avoid::distance_to_lean_pct(float dist_m) { // ignore objects beyond DIST_MAX if (dist_m < 0.0f || dist_m >= _dist_max || _dist_max <= 0.0f) { return 0.0f; } // inverted but linear response return 1.0f - (dist_m / _dist_max); } // returns the maximum positive and negative roll and pitch percentages (in -1 ~ +1 range) based on the proximity sensor void AC_Avoid::get_proximity_roll_pitch_pct(float &roll_positive, float &roll_negative, float &pitch_positive, float &pitch_negative) { AP_Proximity *proximity = AP::proximity(); if (proximity == nullptr) { return; } AP_Proximity &_proximity = *proximity; // exit immediately if proximity sensor is not present if (_proximity.get_status() != AP_Proximity::Status::Good) { return; } const uint8_t obj_count = _proximity.get_object_count(); // if no objects return if (obj_count == 0) { return; } // calculate maximum roll, pitch values from objects for (uint8_t i=0; i 0.0f) { roll_positive = MAX(roll_positive, roll_pct); } else if (roll_pct < 0.0f) { roll_negative = MIN(roll_negative, roll_pct); } if (pitch_pct > 0.0f) { pitch_positive = MAX(pitch_positive, pitch_pct); } else if (pitch_pct < 0.0f) { pitch_negative = MIN(pitch_negative, pitch_pct); } } } } } // singleton instance AC_Avoid *AC_Avoid::_singleton; namespace AP { AC_Avoid *ac_avoid() { return AC_Avoid::get_singleton(); } }