/* implement protocol for controlling an IO microcontroller For bootstrapping this will initially implement the px4io protocol, but will later move to an ArduPilot specific protocol */ #include "AP_IOMCU.h" #if HAL_WITH_IO_MCU #include #include extern const AP_HAL::HAL &hal; #define PKT_MAX_REGS 32 struct PACKED IOPacket { uint8_t count:6; uint8_t code:2; uint8_t crc; uint8_t page; uint8_t offset; uint16_t regs[PKT_MAX_REGS]; // get packet size in bytes uint8_t get_size(void) const { return count*2 + 4; } }; /* values for pkt.code */ enum iocode { // read types CODE_READ = 0, CODE_WRITE = 1, // reply codes CODE_SUCCESS = 0, CODE_CORRUPT = 1, CODE_ERROR = 2 }; // IO pages enum iopage { PAGE_CONFIG = 0, PAGE_STATUS = 1, PAGE_ACTUATORS = 2, PAGE_SERVOS = 3, PAGE_RAW_RCIN = 4, PAGE_RCIN = 5, PAGE_RAW_ADC = 6, PAGE_PWM_INFO = 7, PAGE_SETUP = 50, PAGE_DIRECT_PWM = 54, }; // pending IO events to send, used as an event mask enum ioevents { IOEVENT_INIT=1, IOEVENT_SEND_PWM_OUT, IOEVENT_SET_DISARMED_PWM, IOEVENT_SET_FAILSAFE_PWM, IOEVENT_FORCE_SAFETY_OFF, IOEVENT_FORCE_SAFETY_ON, IOEVENT_SET_ONESHOT_ON, IOEVENT_SET_ONESHOT_OFF, IOEVENT_SET_RATES, IOEVENT_GET_RCIN, IOEVENT_ENABLE_SBUS, IOEVENT_SET_HEATER_TARGET, }; // setup page registers #define PAGE_REG_SETUP_FEATURES 0 #define P_SETUP_FEATURES_SBUS1_OUT 1 #define P_SETUP_FEATURES_SBUS2_OUT 2 #define P_SETUP_FEATURES_PWM_RSSI 4 #define P_SETUP_FEATURES_ADC_RSSI 8 #define P_SETUP_FEATURES_ONESHOT 16 #define PAGE_REG_SETUP_ARMING 1 #define P_SETUP_ARMING_IO_ARM_OK (1<<0) #define P_SETUP_ARMING_FMU_ARMED (1<<1) #define P_SETUP_ARMING_RC_HANDLING_DISABLED (1<<6) #define PAGE_REG_SETUP_PWM_RATE_MASK 2 #define PAGE_REG_SETUP_DEFAULTRATE 3 #define PAGE_REG_SETUP_ALTRATE 4 #define PAGE_REG_SETUP_SBUS_RATE 19 #define PAGE_REG_SETUP_HEATER_DUTY_CYCLE 21 #define PAGE_REG_SETUP_FORCE_SAFETY_OFF 12 #define PAGE_REG_SETUP_FORCE_SAFETY_ON 14 #define FORCE_SAFETY_MAGIC 22027 AP_IOMCU::AP_IOMCU(AP_HAL::UARTDriver &_uart) : uart(_uart) {} /* initialise library, starting thread */ void AP_IOMCU::init(void) { thread_ctx = chThdCreateFromHeap(NULL, THD_WORKING_AREA_SIZE(1024), "IOMCU", 180, thread_start, this); if (thread_ctx == nullptr) { AP_HAL::panic("Unable to allocate IOMCU thread"); } } /* static function to enter thread_main() */ void AP_IOMCU::thread_start(void *ctx) { ((AP_IOMCU *)ctx)->thread_main(); } /* handle event failure */ void AP_IOMCU::event_failed(uint8_t event) { // wait 0.5ms then retry hal.scheduler->delay_microseconds(500); trigger_event(event); } /* main IO thread loop */ void AP_IOMCU::thread_main(void) { // uart runs at 1.5MBit uart.begin(1500*1000, 256, 256); uart.set_blocking_writes(false); trigger_event(IOEVENT_INIT); // enable sbus (until we have BRD_SBUS_OUT available in ChibiOS) enable_sbus_out(150); while (true) { eventmask_t mask = chEvtWaitAnyTimeout(~0, MS2ST(10)); // check for pending IO events if (mask & EVENT_MASK(IOEVENT_SEND_PWM_OUT)) { send_servo_out(); } if (mask & EVENT_MASK(IOEVENT_INIT)) { // set IO_ARM_OK and FMU_ARMED if (!modify_register(PAGE_SETUP, PAGE_REG_SETUP_ARMING, 0, P_SETUP_ARMING_IO_ARM_OK | P_SETUP_ARMING_FMU_ARMED | P_SETUP_ARMING_RC_HANDLING_DISABLED)) { event_failed(IOEVENT_INIT); continue; } } if (mask & EVENT_MASK(IOEVENT_FORCE_SAFETY_OFF)) { if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_FORCE_SAFETY_OFF, FORCE_SAFETY_MAGIC)) { event_failed(IOEVENT_FORCE_SAFETY_OFF); continue; } } if (mask & EVENT_MASK(IOEVENT_FORCE_SAFETY_ON)) { if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_FORCE_SAFETY_ON, FORCE_SAFETY_MAGIC)) { event_failed(IOEVENT_FORCE_SAFETY_ON); continue; } } if (mask & EVENT_MASK(IOEVENT_SET_RATES)) { if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_ALTRATE, rate.freq) || !write_register(PAGE_SETUP, PAGE_REG_SETUP_PWM_RATE_MASK, rate.chmask)) { event_failed(IOEVENT_SET_RATES); continue; } } if (mask & EVENT_MASK(IOEVENT_ENABLE_SBUS)) { if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_SBUS_RATE, rate.sbus_rate_hz) || !modify_register(PAGE_SETUP, PAGE_REG_SETUP_FEATURES, 0, P_SETUP_FEATURES_SBUS1_OUT)) { event_failed(IOEVENT_ENABLE_SBUS); continue; } } if (mask & EVENT_MASK(IOEVENT_SET_HEATER_TARGET)) { if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_HEATER_DUTY_CYCLE, heater_duty_cycle)) { event_failed(IOEVENT_SET_HEATER_TARGET); continue; } } // check for regular timed events uint32_t now = AP_HAL::millis(); if (now - last_rc_read_ms > 20) { // read RC input at 50Hz read_rc_input(); last_rc_read_ms = AP_HAL::millis(); } if (now - last_status_read_ms > 50) { // read status at 20Hz read_status(); last_status_read_ms = AP_HAL::millis(); } if (now - last_servo_read_ms > 50) { // read servo out at 20Hz read_servo(); last_servo_read_ms = AP_HAL::millis(); } if (now - last_debug_ms > 1000) { print_debug(); last_debug_ms = AP_HAL::millis(); } } } /* send servo output data */ void AP_IOMCU::send_servo_out() { if (pwm_out.num_channels > 0) { write_registers(PAGE_DIRECT_PWM, 0, pwm_out.num_channels, pwm_out.pwm); } } /* read RC input */ void AP_IOMCU::read_rc_input() { // read a min of 9 channels and max of max_channels uint8_t n = MIN(MAX(9, rc_input.count), max_channels); read_registers(PAGE_RAW_RCIN, 0, 6+n, (uint16_t *)&rc_input); if (rc_input.flags_rc_ok) { rc_input.last_input_us = AP_HAL::micros(); } } /* read status registers */ void AP_IOMCU::read_status() { uint16_t *r = (uint16_t *)®_status; read_registers(PAGE_STATUS, 0, sizeof(reg_status)/2, r); } /* read servo output values */ void AP_IOMCU::read_servo() { if (pwm_out.num_channels > 0) { read_registers(PAGE_SERVOS, 0, pwm_out.num_channels, pwm_in.pwm); } } /* discard any pending input */ void AP_IOMCU::discard_input(void) { uint8_t n = uart.available(); while (n--) { uart.read(); } } /* read count 16 bit registers */ bool AP_IOMCU::read_registers(uint8_t page, uint8_t offset, uint8_t count, uint16_t *regs) { IOPacket pkt; discard_input(); memset(&pkt.regs[0], 0, count*2); pkt.code = CODE_READ; pkt.count = count; pkt.page = page; pkt.offset = offset; pkt.crc = 0; /* the protocol is a bit strange, as it unnecessarily sends the same size packet that it expects to receive. This means reading a large number of registers wastes a lot of serial bandwidth */ pkt.crc = crc_crc8((const uint8_t *)&pkt, pkt.get_size()); uart.write((uint8_t *)&pkt, pkt.get_size()); // wait for the expected number of reply bytes or timeout if (!uart.wait_timeout(count*2+4, 10)) { return false; } uint8_t *b = (uint8_t *)&pkt; uint8_t n = uart.available(); for (uint8_t i=0; iprintf("bad crc %02x should be %02x n=%u %u/%u/%u\n", got_crc, expected_crc, n, page, offset, count); return false; } if (pkt.code != CODE_SUCCESS) { hal.console->printf("bad code %02x read %u/%u/%u\n", pkt.code, page, offset, count); return false; } if (pkt.count < count) { hal.console->printf("bad count %u read %u/%u/%u n=%u\n", pkt.count, page, offset, count, n); return false; } memcpy(regs, pkt.regs, count*2); return true; } /* write count 16 bit registers */ bool AP_IOMCU::write_registers(uint8_t page, uint8_t offset, uint8_t count, const uint16_t *regs) { IOPacket pkt; discard_input(); memset(&pkt.regs[0], 0, count*2); pkt.code = CODE_WRITE; pkt.count = count; pkt.page = page; pkt.offset = offset; pkt.crc = 0; memcpy(pkt.regs, regs, 2*count); pkt.crc = crc_crc8((const uint8_t *)&pkt, pkt.get_size()); uart.write((uint8_t *)&pkt, pkt.get_size()); // wait for the expected number of reply bytes or timeout if (!uart.wait_timeout(4, 10)) { hal.console->printf("no reply for %u/%u/%u\n", page, offset, count); return false; } uint8_t *b = (uint8_t *)&pkt; uint8_t n = uart.available(); for (uint8_t i=0; iprintf("bad code %02x write %u/%u/%u %02x/%02x n=%u\n", pkt.code, page, offset, count, pkt.page, pkt.offset, n); return false; } uint8_t got_crc = pkt.crc; pkt.crc = 0; uint8_t expected_crc = crc_crc8((const uint8_t *)&pkt, pkt.get_size()); if (got_crc != expected_crc) { hal.console->printf("bad crc %02x should be %02x\n", got_crc, expected_crc); return false; } return true; } // modify a single register bool AP_IOMCU::modify_register(uint8_t page, uint8_t offset, uint16_t clearbits, uint16_t setbits) { uint16_t v = 0; if (!read_registers(page, offset, 1, &v)) { return false; } uint16_t v2 = (v & ~clearbits) | setbits; if (v2 == v) { return true; } return write_registers(page, offset, 1, &v2); } void AP_IOMCU::write_channel(uint8_t chan, uint16_t pwm) { if (chan >= max_channels) { return; } if (chan >= pwm_out.num_channels) { pwm_out.num_channels = chan+1; } pwm_out.pwm[chan] = pwm; if (!corked) { push(); } } void AP_IOMCU::print_debug(void) { #if 0 const uint16_t *r = (const uint16_t *)®_status; for (uint8_t i=0; iprintf("%04x ", r[i]); } hal.console->printf("\n"); #endif } // trigger an ioevent void AP_IOMCU::trigger_event(uint8_t event) { chEvtSignal(thread_ctx, EVENT_MASK(event)); } // get state of safety switch AP_HAL::Util::safety_state AP_IOMCU::get_safety_switch_state(void) const { return reg_status.flag_safety_off?AP_HAL::Util::SAFETY_ARMED:AP_HAL::Util::SAFETY_DISARMED; } // force safety on bool AP_IOMCU::force_safety_on(void) { trigger_event(IOEVENT_FORCE_SAFETY_ON); return true; } // force safety off void AP_IOMCU::force_safety_off(void) { trigger_event(IOEVENT_FORCE_SAFETY_OFF); } // read from one channel uint16_t AP_IOMCU::read_channel(uint8_t chan) { return pwm_in.pwm[chan]; } // cork output void AP_IOMCU::cork(void) { corked = true; } // push output void AP_IOMCU::push(void) { trigger_event(IOEVENT_SEND_PWM_OUT); corked = false; } // set output frequency void AP_IOMCU::set_freq(uint16_t chmask, uint16_t freq) { rate.freq = freq; rate.chmask = chmask; trigger_event(IOEVENT_SET_RATES); } // get output frequency uint16_t AP_IOMCU::get_freq(uint16_t chan) { if ((1U<