/* implement generic UARTDriver code, including port locking */ #include "AP_HAL.h" void AP_HAL::UARTDriver::begin(uint32_t baud, uint16_t rxSpace, uint16_t txSpace) { if (lock_write_key != 0) { // silently fail return; } return _begin(baud, rxSpace, txSpace); } void AP_HAL::UARTDriver::begin(uint32_t baud) { return begin(baud, 0, 0); } /* lock the uart for exclusive use by write_locked() and read_locked() with the right key */ bool AP_HAL::UARTDriver::lock_port(uint32_t write_key, uint32_t read_key) { if (lock_write_key != 0 && write_key != lock_write_key && write_key != 0) { // someone else is using it return false; } if (lock_read_key != 0 && read_key != lock_read_key && read_key != 0) { // someone else is using it return false; } lock_write_key = write_key; lock_read_key = read_key; return true; } void AP_HAL::UARTDriver::begin_locked(uint32_t baud, uint16_t rxSpace, uint16_t txSpace, uint32_t key) { if (lock_write_key != 0 && key != lock_write_key) { // silently fail return; } return _begin(baud, rxSpace, txSpace); } /* write to a locked port. If port is locked and key is not correct then 0 is returned and write is discarded. All writes are non-blocking */ size_t AP_HAL::UARTDriver::write_locked(const uint8_t *buffer, size_t size, uint32_t key) { if (lock_write_key != 0 && key != lock_write_key) { return 0; } return _write(buffer, size); } /* read from a locked port. If port is locked and key is not correct then -1 is returned */ ssize_t AP_HAL::UARTDriver::read_locked(uint8_t *buf, size_t count, uint32_t key) { if (lock_read_key != 0 && key != lock_read_key) { return 0; } ssize_t ret = _read(buf, count); #if AP_UART_MONITOR_ENABLED auto monitor = _monitor_read_buffer; if (monitor != nullptr && ret > 0) { monitor->write(buf, ret); } #endif return ret; } uint32_t AP_HAL::UARTDriver::available_locked(uint32_t key) { if (lock_read_key != 0 && lock_read_key != key) { return 0; } return _available(); } size_t AP_HAL::UARTDriver::write(const uint8_t *buffer, size_t size) { if (lock_write_key != 0) { return 0; } return _write(buffer, size); } size_t AP_HAL::UARTDriver::write(uint8_t c) { return write(&c, 1); } size_t AP_HAL::UARTDriver::write(const char *str) { return write((const uint8_t *)str, strlen(str)); } ssize_t AP_HAL::UARTDriver::read(uint8_t *buffer, uint16_t count) { return read_locked(buffer, count, 0); } bool AP_HAL::UARTDriver::read(uint8_t &b) { ssize_t n = read(&b, 1); return n > 0; } int16_t AP_HAL::UARTDriver::read(void) { uint8_t b; if (!read(b)) { return -1; } return b; } uint32_t AP_HAL::UARTDriver::available() { if (lock_read_key != 0) { return 0; } return _available(); } void AP_HAL::UARTDriver::end() { if (lock_read_key != 0 || lock_write_key != 0) { return; } _end(); } void AP_HAL::UARTDriver::flush() { if (lock_read_key != 0 || lock_write_key != 0) { return; } _flush(); } bool AP_HAL::UARTDriver::discard_input() { if (lock_read_key != 0) { return false; } return _discard_input(); } /* default implementation of receive_time_constraint_us() will be used for subclasses that don't implement the call (eg. network sockets). Best we can do is to use the current timestamp as we don't know the transport delay */ uint64_t AP_HAL::UARTDriver::receive_time_constraint_us(uint16_t nbytes) { return AP_HAL::micros64(); } #if HAL_UART_STATS_ENABLED // Take cumulative bytes and return the change since last call uint32_t AP_HAL::UARTDriver::StatsTracker::ByteTracker::update(uint32_t bytes) { const uint32_t change = bytes - last_bytes; last_bytes = bytes; return change; } #endif