// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // mission storage static const StorageAccess wp_storage(StorageManager::StorageMission); static void init_tracker() { hal.uartA->begin(SERIAL0_BAUD, 128, SERIAL_BUFSIZE); // gps port hal.uartB->begin(38400, 256, 16); cliSerial->printf_P(PSTR("\n\nInit " THISFIRMWARE "\n\nFree RAM: %u\n"), hal.util->available_memory()); // Check the EEPROM format version before loading any parameters from EEPROM load_parameters(); BoardConfig.init(); // reset the uartA baud rate after parameter load hal.uartA->begin(map_baudrate(g.serial0_baud)); // init baro before we start the GCS, so that the CLI baro test works barometer.init(); // init the GCS gcs[0].init(hal.uartA); // set up snooping on other mavlink destinations gcs[0].set_snoop(mavlink_snoop); // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb, 5); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. usb_connected = true; check_usb_mux(); // we have a 2nd serial port for telemetry hal.uartC->begin(map_baudrate(g.serial1_baud), 128, SERIAL1_BUFSIZE); gcs[1].setup_uart(hal.uartC, map_baudrate(g.serial1_baud), 128, SERIAL1_BUFSIZE); mavlink_system.sysid = g.sysid_this_mav; if (g.compass_enabled==true) { if (!compass.init() || !compass.read()) { cliSerial->println_P(PSTR("Compass initialisation failed!")); g.compass_enabled = false; } else { ahrs.set_compass(&compass); } } // GPS Initialization gps.init(NULL); ahrs.init(); ahrs.set_fly_forward(false); ins.init(AP_InertialSensor::WARM_START, ins_sample_rate); ahrs.reset(); init_barometer(); hal.uartA->set_blocking_writes(false); hal.uartB->set_blocking_writes(false); hal.uartC->set_blocking_writes(false); // initialise servos init_servos(); // use given start positions - useful for indoor testing, and // while waiting for GPS lock current_loc.lat = g.start_latitude * 1.0e7f; current_loc.lng = g.start_longitude * 1.0e7f; // see if EEPROM has a default location as well if (current_loc.lat == 0 && current_loc.lng == 0) { get_home_eeprom(current_loc); } gcs_send_text_P(SEVERITY_LOW,PSTR("\nReady to track.")); hal.scheduler->delay(1000); // Why???? set_mode(AUTO); // tracking if (g.startup_delay > 0) { // arm servos with trim value to allow them to start up (required // for some servos) prepare_servos(); } // calibrate pressure on startup by default nav_status.need_altitude_calibration = true; } // Level the tracker by calibrating the INS // Requires that the tracker be physically 'level' and horizontal static void calibrate_ins() { gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move tracker")); ahrs.init(); ins.init(AP_InertialSensor::COLD_START, ins_sample_rate); ins.init_accel(); ahrs.set_trim(Vector3f(0, 0, 0)); ahrs.reset(); init_barometer(); } // updates the status of the notify objects // should be called at 50hz static void update_notify() { notify.update(); } /* fetch HOME from EEPROM */ static bool get_home_eeprom(struct Location &loc) { // Find out proper location in memory by using the start_byte position + the index // -------------------------------------------------------------------------------- if (g.command_total.get() == 0) { return false; } // read WP position loc.options = wp_storage.read_byte(0); loc.alt = wp_storage.read_uint32(1); loc.lat = wp_storage.read_uint32(5); loc.lng = wp_storage.read_uint32(9); return true; } static void set_home_eeprom(struct Location temp) { wp_storage.write_byte(0, temp.options); wp_storage.write_uint32(1, temp.alt); wp_storage.write_uint32(5, temp.lat); wp_storage.write_uint32(9, temp.lng); // Now have a home location in EEPROM g.command_total.set_and_save(1); // At most 1 entry for HOME } static void set_home(struct Location temp) { set_home_eeprom(temp); current_loc = temp; } static void arm_servos() { channel_yaw.enable_out(); channel_pitch.enable_out(); } static void disarm_servos() { channel_yaw.disable_out(); channel_pitch.disable_out(); } /* setup servos to trim value after initialising */ static void prepare_servos() { start_time_ms = hal.scheduler->millis(); channel_yaw.radio_out = channel_yaw.radio_trim; channel_pitch.radio_out = channel_pitch.radio_trim; channel_yaw.output(); channel_pitch.output(); } static void set_mode(enum ControlMode mode) { if(control_mode == mode) { // don't switch modes if we are already in the correct mode. return; } control_mode = mode; switch (control_mode) { case AUTO: case MANUAL: case SCAN: arm_servos(); break; case STOP: case INITIALISING: disarm_servos(); break; } } /* set_mode() wrapper for MAVLink SET_MODE */ static bool mavlink_set_mode(uint8_t mode) { switch (mode) { case AUTO: case MANUAL: case SCAN: case STOP: set_mode((enum ControlMode)mode); return true; } return false; } static void check_usb_mux(void) { bool usb_check = hal.gpio->usb_connected(); if (usb_check == usb_connected) { return; } // the user has switched to/from the telemetry port usb_connected = usb_check; #if CONFIG_HAL_BOARD == HAL_BOARD_APM2 // the APM2 has a MUX setup where the first serial port switches // between USB and a TTL serial connection. When on USB we use // SERIAL0_BAUD, but when connected as a TTL serial port we run it // at SERIAL1_BAUD. if (usb_connected) { hal.uartA->begin(SERIAL0_BAUD); } else { hal.uartA->begin(map_baudrate(g.serial1_baud)); } #endif }