import euclid, math import os, pexpect, sys, time, random from subprocess import call, check_call,Popen, PIPE def RPY_to_XYZ(roll, pitch, yaw, length): '''convert roll, pitch and yaw in degrees to Vector3 in X, Y and Z inputs: roll, pitch and yaw are in degrees yaw == 0 when pointing North roll == zero when horizontal. +ve roll means tilting to the right pitch == zero when horizontal, +ve pitch means nose is pointing upwards length is in an arbitrary linear unit. When RPY is (0, 0, 0) then length represents distance upwards outputs: Vector3: X is in units along latitude. +ve X means going North Y is in units along longitude +ve Y means going East Z is altitude in units (+ve is up) test suite: >>> RPY_to_XYZ(0, 0, 0, 1) Vector3(0.00, 0.00, 1.00) >>> RPY_to_XYZ(0, 0, 0, 2) Vector3(0.00, 0.00, 2.00) >>> RPY_to_XYZ(90, 0, 0, 1) Vector3(0.00, 1.00, 0.00) >>> RPY_to_XYZ(-90, 0, 0, 1) Vector3(0.00, -1.00, 0.00) >>> RPY_to_XYZ(0, 90, 0, 1) Vector3(-1.00, 0.00, 0.00) >>> RPY_to_XYZ(0, -90, 0, 1) Vector3(1.00, 0.00, 0.00) >>> RPY_to_XYZ(90, 0, 180, 1) Vector3(-0.00, -1.00, 0.00) >>> RPY_to_XYZ(-90, 0, 180, 1) Vector3(0.00, 1.00, 0.00) >>> RPY_to_XYZ(0, 90, 180, 1) Vector3(1.00, -0.00, 0.00) >>> RPY_to_XYZ(0, -90, 180, 1) Vector3(-1.00, 0.00, 0.00) >>> RPY_to_XYZ(90, 0, 90, 1) Vector3(-1.00, 0.00, 0.00) >>> RPY_to_XYZ(-90, 0, 90, 1) Vector3(1.00, -0.00, 0.00) >>> RPY_to_XYZ(90, 0, 270, 1) Vector3(1.00, -0.00, 0.00) >>> RPY_to_XYZ(-90, 0, 270, 1) Vector3(-1.00, 0.00, 0.00) >>> RPY_to_XYZ(0, 90, 90, 1) Vector3(-0.00, -1.00, 0.00) >>> RPY_to_XYZ(0, -90, 90, 1) Vector3(0.00, 1.00, 0.00) >>> RPY_to_XYZ(0, 90, 270, 1) Vector3(0.00, 1.00, 0.00) >>> RPY_to_XYZ(0, -90, 270, 1) Vector3(-0.00, -1.00, 0.00) ''' v = euclid.Vector3(0, 0, length) v = euclid.Quaternion.new_rotate_euler(-math.radians(pitch), 0, -math.radians(roll)) * v v = euclid.Quaternion.new_rotate_euler(0, math.radians(yaw), 0) * v return v def m2ft(x): '''meters to feet''' return float(x) / 0.3048 def ft2m(x): '''feet to meters''' return float(x) * 0.3048 def kt2mps(x): return x * 0.514444444 def mps2kt(x): return x / 0.514444444 def topdir(): '''return top of git tree where autotest is running from''' d = os.path.dirname(os.path.realpath(__file__)) assert(os.path.basename(d)=='pysim') d = os.path.dirname(d) assert(os.path.basename(d)=='autotest') d = os.path.dirname(d) assert(os.path.basename(d)=='Tools') d = os.path.dirname(d) return d def reltopdir(path): '''return a path relative to topdir()''' return os.path.normpath(os.path.join(topdir(), path)) def run_cmd(cmd, dir=".", show=False, output=False, checkfail=True): '''run a shell command''' if show: print("Running: '%s' in '%s'" % (cmd, dir)) if output: return Popen([cmd], shell=True, stdout=PIPE, cwd=dir).communicate()[0] elif checkfail: return check_call(cmd, shell=True, cwd=dir) else: return call(cmd, shell=True, cwd=dir) def rmfile(path): '''remove a file if it exists''' try: os.unlink(path) except Exception: pass def deltree(path): '''delete a tree of files''' run_cmd('rm -rf %s' % path) def build_SIL(atype): '''build desktop SIL''' run_cmd("make clean sitl", dir=reltopdir(atype), checkfail=True) return True def build_AVR(atype, board='mega2560'): '''build AVR binaries''' config = open(reltopdir('config.mk'), mode='w') config.write(''' BOARD=%s PORT=/dev/null ''' % board) config.close() run_cmd("make clean", dir=reltopdir(atype), checkfail=True) run_cmd("make", dir=reltopdir(atype), checkfail=True) return True # list of pexpect children to close on exit close_list = [] def pexpect_autoclose(p): '''mark for autoclosing''' global close_list close_list.append(p) def pexpect_close(p): '''close a pexpect child''' global close_list try: p.close() except Exception: pass try: p.close(force=True) except Exception: pass if p in close_list: close_list.remove(p) def pexpect_close_all(): '''close all pexpect children''' global close_list for p in close_list[:]: pexpect_close(p) def pexpect_drain(p): '''drain any pending input''' try: p.read_nonblocking(1000, timeout=0) except pexpect.TIMEOUT: pass def start_SIL(atype, valgrind=False, wipe=False, CLI=False, height=None): '''launch a SIL instance''' cmd="" if valgrind and os.path.exists('/usr/bin/valgrind'): cmd += 'valgrind -q --log-file=%s-valgrind.log ' % atype cmd += reltopdir('tmp/%s.build/%s.elf' % (atype, atype)) if wipe: cmd += ' -w' if CLI: cmd += ' -s' if height is not None: cmd += ' -H %u' % height ret = pexpect.spawn(cmd, logfile=sys.stdout, timeout=5) ret.delaybeforesend = 0 pexpect_autoclose(ret) ret.expect('Waiting for connection') return ret def start_MAVProxy_SIL(atype, aircraft=None, setup=False, master='tcp:127.0.0.1:5760', fgrate=200, options=None, logfile=sys.stdout): '''launch mavproxy connected to a SIL instance''' global close_list MAVPROXY = reltopdir('../MAVProxy/mavproxy.py') cmd = MAVPROXY + ' --master=%s --fgrate=%u --out=127.0.0.1:14550' % (master, fgrate) if setup: cmd += ' --setup' if aircraft is None: aircraft = 'test.%s' % atype cmd += ' --aircraft=%s' % aircraft if options is not None: cmd += ' ' + options ret = pexpect.spawn(cmd, logfile=logfile, timeout=60) ret.delaybeforesend = 0 pexpect_autoclose(ret) return ret def expect_setup_callback(e, callback): '''setup a callback that is called once a second while waiting for patterns''' def _expect_callback(pattern, timeout=e.timeout): tstart = time.time() while time.time() < tstart + timeout: try: ret = e.expect_saved(pattern, timeout=1) return ret except pexpect.TIMEOUT: e.expect_user_callback(e) pass print("Timed out looking for %s" % pattern) raise pexpect.TIMEOUT(timeout) e.expect_user_callback = callback e.expect_saved = e.expect e.expect = _expect_callback def mkdir_p(dir): '''like mkdir -p''' if not dir: return if dir.endswith("/"): mkdir_p(dir[:-1]) return if os.path.isdir(dir): return mkdir_p(os.path.dirname(dir)) os.mkdir(dir) def loadfile(fname): '''load a file as a string''' f = open(fname, mode='r') r = f.read() f.close() return r def lock_file(fname): '''lock a file''' import fcntl f = open(fname, mode='w') try: fcntl.lockf(f, fcntl.LOCK_EX | fcntl.LOCK_NB) except Exception: return None return f def check_parent(parent_pid=os.getppid()): '''check our parent process is still alive''' try: os.kill(parent_pid, 0) except Exception: print("Parent had finished - exiting") sys.exit(1) def EarthRatesToBodyRates(roll, pitch, yaw, rollRate, pitchRate, yawRate): '''convert the angular velocities from earth frame to body frame. Thanks to James Goppert for the formula all inputs and outputs are in degrees returns a tuple, (p,q,r) ''' from math import radians, degrees, sin, cos, tan phi = radians(roll) theta = radians(pitch) phiDot = radians(rollRate) thetaDot = radians(pitchRate) psiDot = radians(yawRate) p = phiDot - psiDot*sin(theta) q = cos(phi)*thetaDot + sin(phi)*psiDot*cos(theta) r = cos(phi)*psiDot*cos(theta) - sin(phi)*thetaDot return (degrees(p), degrees(q), degrees(r)) def BodyRatesToEarthRates(roll, pitch, yaw, pDeg, qDeg, rDeg): '''convert the angular velocities from body frame to earth frame. all inputs and outputs are in degrees returns a tuple, (rollRate,pitchRate,yawRate) ''' from math import radians, degrees, sin, cos, tan, fabs p = radians(pDeg) q = radians(qDeg) r = radians(rDeg) phi = radians(roll) theta = radians(pitch) phiDot = p + tan(theta)*(q*sin(phi) + r*cos(phi)) thetaDot = q*cos(phi) - r*sin(phi) if fabs(cos(theta)) < 1.0e-20: theta += 1.0e-10 psiDot = (q*sin(phi) + r*cos(phi))/cos(theta) return (degrees(phiDot), degrees(thetaDot), degrees(psiDot)) class Wind(object): '''a wind generation object''' def __init__(self, windstring, cross_section=0.1): a = windstring.split(',') if len(a) != 3: raise RuntimeError("Expected wind in speed,direction,turbulance form, not %s" % windstring) self.speed = float(a[0]) # m/s self.direction = float(a[1]) # direction the wind is coming from self.turbulance= float(a[2]) # turbulance factor (standard deviation) # the cross-section of the aircraft to wind. This is multiplied by the # difference in the wind and the velocity of the aircraft to give the acceleration self.cross_section = cross_section # the time constant for the turbulance - the average period of the # changes over time self.turbulance_time_constant = 5.0 # wind time record self.tlast = time.time() # initial turbulance multiplier self.turbulance_mul = 1.0 def accel(self, velocity, deltat=None): '''return current wind acceleration in ground frame. The velocity is a Vector3 of the current velocity of the aircraft in earth frame, m/s''' if deltat is None: tnow = time.time() deltat = tnow - self.tlast self.tlast = tnow # wind vector v = euclid.Vector3(-self.speed, 0, 0) wind = euclid.Quaternion.new_rotate_euler(0, math.radians(self.direction), 0) * v # update turbulance random walk w_delta = math.sqrt(deltat)*(1.0-random.gauss(1.0, self.turbulance)) w_delta -= (self.turbulance_mul-1.0)*(deltat/self.turbulance_time_constant) self.turbulance_mul += w_delta # add in turbulance wind *= self.turbulance_mul # relative wind vector relwind = wind - velocity # we ignore turbulance for now a = relwind * self.cross_section return a if __name__ == "__main__": import doctest doctest.testmod()