#include "Copter.h" #include /***************************************************************************** * The init_ardupilot function processes everything we need for an in - air restart * We will determine later if we are actually on the ground and process a * ground start in that case. * *****************************************************************************/ static void failsafe_check_static() { copter.failsafe_check(); } void Copter::init_ardupilot() { #if STATS_ENABLED == ENABLED // initialise stats module g2.stats.init(); #endif BoardConfig.init(); #if HAL_MAX_CAN_PROTOCOL_DRIVERS can_mgr.init(); #endif // init cargo gripper #if AP_GRIPPER_ENABLED g2.gripper.init(); #endif // init winch #if AP_WINCH_ENABLED g2.winch.init(); #endif // initialise notify system notify.init(); notify_flight_mode(); // initialise battery monitor battery.init(); // Init RSSI rssi.init(); barometer.init(); // setup telem slots with serial ports gcs().setup_uarts(); #if OSD_ENABLED == ENABLED osd.init(); #endif #if HAL_LOGGING_ENABLED log_init(); #endif // update motor interlock state update_using_interlock(); #if FRAME_CONFIG == HELI_FRAME // trad heli specific initialisation heli_init(); #endif #if FRAME_CONFIG == HELI_FRAME input_manager.set_loop_rate(scheduler.get_loop_rate_hz()); #endif init_rc_in(); // sets up rc channels from radio // initialise surface to be tracked in SurfaceTracking // must be before rc init to not override initial switch position surface_tracking.init((SurfaceTracking::Surface)copter.g2.surftrak_mode.get()); // allocate the motors class allocate_motors(); // initialise rc channels including setting mode rc().convert_options(RC_Channel::AUX_FUNC::ARMDISARM_UNUSED, RC_Channel::AUX_FUNC::ARMDISARM_AIRMODE); rc().init(); // sets up motors and output to escs init_rc_out(); // check if we should enter esc calibration mode esc_calibration_startup_check(); // motors initialised so parameters can be sent ap.initialised_params = true; #if AP_RELAY_ENABLED relay.init(); #endif /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); // Do GPS init gps.set_log_gps_bit(MASK_LOG_GPS); gps.init(serial_manager); AP::compass().set_log_bit(MASK_LOG_COMPASS); AP::compass().init(); #if AP_AIRSPEED_ENABLED airspeed.set_log_bit(MASK_LOG_IMU); #endif #if AC_OAPATHPLANNER_ENABLED == ENABLED g2.oa.init(); #endif attitude_control->parameter_sanity_check(); #if AP_OPTICALFLOW_ENABLED // initialise optical flow sensor optflow.init(MASK_LOG_OPTFLOW); #endif // AP_OPTICALFLOW_ENABLED #if HAL_MOUNT_ENABLED // initialise camera mount camera_mount.init(); #endif #if AP_CAMERA_ENABLED // initialise camera camera.init(); #endif #if AC_PRECLAND_ENABLED // initialise precision landing init_precland(); #endif #if AP_LANDINGGEAR_ENABLED // initialise landing gear position landinggear.init(); #endif #ifdef USERHOOK_INIT USERHOOK_INIT #endif // read Baro pressure at ground //----------------------------- barometer.set_log_baro_bit(MASK_LOG_IMU); barometer.calibrate(); #if RANGEFINDER_ENABLED == ENABLED // initialise rangefinder init_rangefinder(); #endif #if HAL_PROXIMITY_ENABLED // init proximity sensor g2.proximity.init(); #endif #if AP_BEACON_ENABLED // init beacons used for non-gps position estimation g2.beacon.init(); #endif #if AP_RPM_ENABLED // initialise AP_RPM library rpm_sensor.init(); #endif #if MODE_AUTO_ENABLED == ENABLED // initialise mission library mode_auto.mission.init(); #endif #if MODE_SMARTRTL_ENABLED == ENABLED // initialize SmartRTL g2.smart_rtl.init(); #endif #if HAL_LOGGING_ENABLED // initialise AP_Logger library logger.setVehicle_Startup_Writer(FUNCTOR_BIND(&copter, &Copter::Log_Write_Vehicle_Startup_Messages, void)); #endif startup_INS_ground(); #if AP_SCRIPTING_ENABLED g2.scripting.init(); #endif // AP_SCRIPTING_ENABLED #if AC_CUSTOMCONTROL_MULTI_ENABLED == ENABLED custom_control.init(); #endif // set landed flags set_land_complete(true); set_land_complete_maybe(true); // enable CPU failsafe failsafe_enable(); ins.set_log_raw_bit(MASK_LOG_IMU_RAW); motors->output_min(); // output lowest possible value to motors // attempt to set the initial_mode, else set to STABILIZE if (!set_mode((enum Mode::Number)g.initial_mode.get(), ModeReason::INITIALISED)) { // set mode to STABILIZE will trigger mode change notification to pilot set_mode(Mode::Number::STABILIZE, ModeReason::UNAVAILABLE); } // flag that initialisation has completed ap.initialised = true; } //****************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //****************************************************************************** void Copter::startup_INS_ground() { // initialise ahrs (may push imu calibration into the mpu6000 if using that device). ahrs.init(); ahrs.set_vehicle_class(AP_AHRS::VehicleClass::COPTER); // Warm up and calibrate gyro offsets ins.init(scheduler.get_loop_rate_hz()); // reset ahrs including gyro bias ahrs.reset(); } // position_ok - returns true if the horizontal absolute position is ok and home position is set bool Copter::position_ok() const { // return false if ekf failsafe has triggered if (failsafe.ekf) { return false; } // check ekf position estimate return (ekf_has_absolute_position() || ekf_has_relative_position()); } // ekf_has_absolute_position - returns true if the EKF can provide an absolute WGS-84 position estimate bool Copter::ekf_has_absolute_position() const { if (!ahrs.have_inertial_nav()) { // do not allow navigation with dcm position return false; } // with EKF use filter status and ekf check nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal position if (!motors->armed()) { return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs)); } else { // once armed we require a good absolute position and EKF must not be in const_pos_mode return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode); } } // ekf_has_relative_position - returns true if the EKF can provide a position estimate relative to it's starting position bool Copter::ekf_has_relative_position() const { // return immediately if EKF not used if (!ahrs.have_inertial_nav()) { return false; } // return immediately if neither optflow nor visual odometry is enabled and dead reckoning is inactive bool enabled = false; #if AP_OPTICALFLOW_ENABLED if (optflow.enabled()) { enabled = true; } #endif #if HAL_VISUALODOM_ENABLED if (visual_odom.enabled()) { enabled = true; } #endif if (dead_reckoning.active && !dead_reckoning.timeout) { enabled = true; } if (!enabled) { return false; } // get filter status from EKF nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal relative position if (!motors->armed()) { return (filt_status.flags.pred_horiz_pos_rel); } else { return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode); } } // returns true if the ekf has a good altitude estimate (required for modes which do AltHold) bool Copter::ekf_alt_ok() const { if (!ahrs.have_inertial_nav()) { // do not allow alt control with only dcm return false; } // with EKF use filter status and ekf check nav_filter_status filt_status = inertial_nav.get_filter_status(); // require both vertical velocity and position return (filt_status.flags.vert_vel && filt_status.flags.vert_pos); } // update_auto_armed - update status of auto_armed flag void Copter::update_auto_armed() { // disarm checks if(ap.auto_armed){ // if motors are disarmed, auto_armed should also be false if(!motors->armed()) { set_auto_armed(false); return; } // if in stabilize or acro flight mode and throttle is zero, auto-armed should become false if(flightmode->has_manual_throttle() && ap.throttle_zero && !failsafe.radio) { set_auto_armed(false); } }else{ // arm checks // for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true if(motors->armed() && ap.using_interlock) { if(!ap.throttle_zero && motors->get_spool_state() == AP_Motors::SpoolState::THROTTLE_UNLIMITED) { set_auto_armed(true); } // if motors are armed and throttle is above zero auto_armed should be true // if motors are armed and we are in throw mode, then auto_armed should be true } else if (motors->armed() && !ap.using_interlock) { if(!ap.throttle_zero || flightmode->mode_number() == Mode::Number::THROW) { set_auto_armed(true); } } } } #if HAL_LOGGING_ENABLED /* should we log a message type now? */ bool Copter::should_log(uint32_t mask) { ap.logging_started = logger.logging_started(); return logger.should_log(mask); } #endif /* allocate the motors class */ void Copter::allocate_motors(void) { switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { #if FRAME_CONFIG != HELI_FRAME case AP_Motors::MOTOR_FRAME_QUAD: case AP_Motors::MOTOR_FRAME_HEXA: case AP_Motors::MOTOR_FRAME_Y6: case AP_Motors::MOTOR_FRAME_OCTA: case AP_Motors::MOTOR_FRAME_OCTAQUAD: case AP_Motors::MOTOR_FRAME_DODECAHEXA: case AP_Motors::MOTOR_FRAME_DECA: case AP_Motors::MOTOR_FRAME_SCRIPTING_MATRIX: default: motors = new AP_MotorsMatrix(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsMatrix::var_info; break; case AP_Motors::MOTOR_FRAME_TRI: motors = new AP_MotorsTri(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsTri::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_TRICOPTER); break; case AP_Motors::MOTOR_FRAME_SINGLE: motors = new AP_MotorsSingle(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsSingle::var_info; break; case AP_Motors::MOTOR_FRAME_COAX: motors = new AP_MotorsCoax(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsCoax::var_info; break; case AP_Motors::MOTOR_FRAME_TAILSITTER: motors = new AP_MotorsTailsitter(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsTailsitter::var_info; break; case AP_Motors::MOTOR_FRAME_6DOF_SCRIPTING: #if AP_SCRIPTING_ENABLED motors = new AP_MotorsMatrix_6DoF_Scripting(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsMatrix_6DoF_Scripting::var_info; #endif // AP_SCRIPTING_ENABLED break; case AP_Motors::MOTOR_FRAME_DYNAMIC_SCRIPTING_MATRIX: #if AP_SCRIPTING_ENABLED motors = new AP_MotorsMatrix_Scripting_Dynamic(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsMatrix_Scripting_Dynamic::var_info; #endif // AP_SCRIPTING_ENABLED break; #else // FRAME_CONFIG == HELI_FRAME case AP_Motors::MOTOR_FRAME_HELI_DUAL: motors = new AP_MotorsHeli_Dual(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsHeli_Dual::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); break; case AP_Motors::MOTOR_FRAME_HELI_QUAD: motors = new AP_MotorsHeli_Quad(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsHeli_Quad::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); break; case AP_Motors::MOTOR_FRAME_HELI: default: motors = new AP_MotorsHeli_Single(copter.scheduler.get_loop_rate_hz()); motors_var_info = AP_MotorsHeli_Single::var_info; AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI); break; #endif } if (motors == nullptr) { AP_BoardConfig::allocation_error("FRAME_CLASS=%u", (unsigned)g2.frame_class.get()); } AP_Param::load_object_from_eeprom(motors, motors_var_info); ahrs_view = ahrs.create_view(ROTATION_NONE); if (ahrs_view == nullptr) { AP_BoardConfig::allocation_error("AP_AHRS_View"); } #if FRAME_CONFIG != HELI_FRAME if ((AP_Motors::motor_frame_class)g2.frame_class.get() == AP_Motors::MOTOR_FRAME_6DOF_SCRIPTING) { #if AP_SCRIPTING_ENABLED attitude_control = new AC_AttitudeControl_Multi_6DoF(*ahrs_view, aparm, *motors); attitude_control_var_info = AC_AttitudeControl_Multi_6DoF::var_info; #endif // AP_SCRIPTING_ENABLED } else { attitude_control = new AC_AttitudeControl_Multi(*ahrs_view, aparm, *motors); attitude_control_var_info = AC_AttitudeControl_Multi::var_info; } #else attitude_control = new AC_AttitudeControl_Heli(*ahrs_view, aparm, *motors); attitude_control_var_info = AC_AttitudeControl_Heli::var_info; #endif if (attitude_control == nullptr) { AP_BoardConfig::allocation_error("AttitudeControl"); } AP_Param::load_object_from_eeprom(attitude_control, attitude_control_var_info); pos_control = new AC_PosControl(*ahrs_view, inertial_nav, *motors, *attitude_control); if (pos_control == nullptr) { AP_BoardConfig::allocation_error("PosControl"); } AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info); #if AC_OAPATHPLANNER_ENABLED == ENABLED wp_nav = new AC_WPNav_OA(inertial_nav, *ahrs_view, *pos_control, *attitude_control); #else wp_nav = new AC_WPNav(inertial_nav, *ahrs_view, *pos_control, *attitude_control); #endif if (wp_nav == nullptr) { AP_BoardConfig::allocation_error("WPNav"); } AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info); loiter_nav = new AC_Loiter(inertial_nav, *ahrs_view, *pos_control, *attitude_control); if (loiter_nav == nullptr) { AP_BoardConfig::allocation_error("LoiterNav"); } AP_Param::load_object_from_eeprom(loiter_nav, loiter_nav->var_info); #if MODE_CIRCLE_ENABLED == ENABLED circle_nav = new AC_Circle(inertial_nav, *ahrs_view, *pos_control); if (circle_nav == nullptr) { AP_BoardConfig::allocation_error("CircleNav"); } AP_Param::load_object_from_eeprom(circle_nav, circle_nav->var_info); #endif // reload lines from the defaults file that may now be accessible AP_Param::reload_defaults_file(true); // now setup some frame-class specific defaults switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) { case AP_Motors::MOTOR_FRAME_Y6: attitude_control->get_rate_roll_pid().kP().set_default(0.1); attitude_control->get_rate_roll_pid().kD().set_default(0.006); attitude_control->get_rate_pitch_pid().kP().set_default(0.1); attitude_control->get_rate_pitch_pid().kD().set_default(0.006); attitude_control->get_rate_yaw_pid().kP().set_default(0.15); attitude_control->get_rate_yaw_pid().kI().set_default(0.015); break; case AP_Motors::MOTOR_FRAME_TRI: attitude_control->get_rate_yaw_pid().filt_D_hz().set_default(100); break; default: break; } // brushed 16kHz defaults to 16kHz pulses if (motors->is_brushed_pwm_type()) { g.rc_speed.set_default(16000); } // upgrade parameters. This must be done after allocating the objects convert_pid_parameters(); #if FRAME_CONFIG == HELI_FRAME convert_tradheli_parameters(); motors->heli_motors_param_conversions(); #endif #if HAL_PROXIMITY_ENABLED // convert PRX to PRX1_ parameters convert_prx_parameters(); #endif // param count could have changed AP_Param::invalidate_count(); } bool Copter::is_tradheli() const { #if FRAME_CONFIG == HELI_FRAME return true; #else return false; #endif }