/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_VisualOdom_IntelT265.h" #if HAL_VISUALODOM_ENABLED #include #include #include extern const AP_HAL::HAL& hal; // consume vision position estimate data and send to EKF. distances in meters void AP_VisualOdom_IntelT265::handle_vision_position_estimate(uint64_t remote_time_us, uint32_t time_ms, float x, float y, float z, const Quaternion &attitude, uint8_t reset_counter) { const float scale_factor = _frontend.get_pos_scale(); Vector3f pos{x * scale_factor, y * scale_factor, z * scale_factor}; Quaternion att = attitude; // handle user request to align camera if (_align_camera) { if (align_sensor_to_vehicle(pos, attitude)) { _align_camera = false; } } // rotate position and attitude to align with vehicle rotate_and_correct_position(pos); rotate_attitude(att); // send attitude and position to EKF const float posErr = 0; // parameter required? const float angErr = 0; // parameter required? AP::ahrs().writeExtNavData(pos, att, posErr, angErr, time_ms, _frontend.get_delay_ms(), get_reset_timestamp_ms(reset_counter)); // calculate euler orientation for logging float roll; float pitch; float yaw; att.to_euler(roll, pitch, yaw); // log sensor data AP::logger().Write_VisualPosition(remote_time_us, time_ms, pos.x, pos.y, pos.z, degrees(roll), degrees(pitch), wrap_360(degrees(yaw)), reset_counter); // store corrected attitude for use in pre-arm checks _attitude_last = att; // record time for health monitoring _last_update_ms = AP_HAL::millis(); } // consume vision velocity estimate data and send to EKF, velocity in NED meters per second void AP_VisualOdom_IntelT265::handle_vision_speed_estimate(uint64_t remote_time_us, uint32_t time_ms, const Vector3f &vel, uint8_t reset_counter) { // rotate velocity to align with vehicle Vector3f vel_corrected = vel; rotate_velocity(vel_corrected); // send velocity to EKF AP::ahrs().writeExtNavVelData(vel_corrected, _frontend.get_vel_noise(), time_ms, _frontend.get_delay_ms()); // record time for health monitoring _last_update_ms = AP_HAL::millis(); AP::logger().Write_VisualVelocity(remote_time_us, time_ms, vel_corrected, _frontend.get_vel_noise(), reset_counter); } // apply rotation and correction to position void AP_VisualOdom_IntelT265::rotate_and_correct_position(Vector3f &position) const { if (_use_posvel_rotation) { position = _posvel_rotation * position; } position += _pos_correction; } // apply rotation to velocity void AP_VisualOdom_IntelT265::rotate_velocity(Vector3f &velocity) const { if (_use_posvel_rotation) { velocity = _posvel_rotation * velocity; } } // rotate attitude using _yaw_trim void AP_VisualOdom_IntelT265::rotate_attitude(Quaternion &attitude) const { // apply orientation rotation if (_use_att_rotation) { attitude *= _att_rotation; } // apply earth-frame yaw rotation if (!is_zero(_yaw_trim)) { attitude = _yaw_rotation * attitude; } return; } // use sensor provided attitude to calculate rotation to align sensor with AHRS/EKF attitude bool AP_VisualOdom_IntelT265::align_sensor_to_vehicle(const Vector3f &position, const Quaternion &attitude) { // fail immediately if ahrs cannot provide attitude Quaternion ahrs_quat; if (!AP::ahrs().get_quaternion(ahrs_quat)) { return false; } // if ahrs's yaw is from the compass, wait until it has been initialised if (!AP::ahrs().is_ext_nav_used_for_yaw() && !AP::ahrs().yaw_initialised()) { return false; } // clear any existing errors _error_orientation = false; // create rotation quaternion to correct for orientation const Rotation rot = _frontend.get_orientation(); _att_rotation.initialise(); _use_att_rotation = false; if (rot != Rotation::ROTATION_NONE) { _att_rotation.rotate(rot); _att_rotation.invert(); _use_att_rotation = true; } Quaternion att_corrected = attitude; att_corrected *= _att_rotation; // extract sensor's corrected yaw const float sens_yaw = att_corrected.get_euler_yaw(); // trim yaw by difference between ahrs and sensor yaw Vector3f angle_diff; ahrs_quat.angular_difference(att_corrected).to_axis_angle(angle_diff); const float yaw_trim_orig = _yaw_trim; _yaw_trim = angle_diff.z; gcs().send_text(MAV_SEVERITY_CRITICAL, "VisualOdom: yaw shifted %d to %d deg", (int)degrees(_yaw_trim - yaw_trim_orig), (int)wrap_360(degrees(sens_yaw + _yaw_trim))); // convert _yaw_trim to _yaw_rotation to speed up processing later _yaw_rotation.from_euler(0.0f, 0.0f, _yaw_trim); // calculate position with current rotation and correction Vector3f pos_orig = position; rotate_and_correct_position(pos_orig); // create position and velocity rotation from yaw trim _use_posvel_rotation = false; if (!is_zero(_yaw_trim)) { _posvel_rotation.from_euler(0.0f, 0.0f, _yaw_trim); _use_posvel_rotation = true; } // recalculate position with new rotation Vector3f pos_new = position; rotate_and_correct_position(pos_new); // update position correction to remove change due to rotation _pos_correction += (pos_orig - pos_new); return true; } // returns false if we fail arming checks, in which case the buffer will be populated with a failure message bool AP_VisualOdom_IntelT265::pre_arm_check(char *failure_msg, uint8_t failure_msg_len) const { // exit immediately if not healthy if (!healthy()) { hal.util->snprintf(failure_msg, failure_msg_len, "not healthy"); return false; } // check for unsupported orientation if (_error_orientation) { hal.util->snprintf(failure_msg, failure_msg_len, "check VISO_ORIENT parameter"); return false; } // get ahrs attitude Quaternion ahrs_quat; if (!AP::ahrs().get_quaternion(ahrs_quat)) { hal.util->snprintf(failure_msg, failure_msg_len, "waiting for AHRS attitude"); return false; } // get angular difference between AHRS and camera attitude Vector3f angle_diff; _attitude_last.angular_difference(ahrs_quat).to_axis_angle(angle_diff); // check if roll and pitch is different by > 10deg (using NED so cannot determine whether roll or pitch specifically) const float rp_diff_deg = degrees(safe_sqrt(sq(angle_diff.x)+sq(angle_diff.y))); if (rp_diff_deg > 10.0f) { hal.util->snprintf(failure_msg, failure_msg_len, "roll/pitch diff %4.1f deg (>10)",(double)rp_diff_deg); return false; } // check if yaw is different by > 10deg const float yaw_diff_deg = degrees(fabsf(angle_diff.z)); if (yaw_diff_deg > 10.0f) { hal.util->snprintf(failure_msg, failure_msg_len, "yaw diff %4.1f deg (>10)",(double)yaw_diff_deg); return false; } return true; } #endif