#include "SIM_MS5611.h" #include #include using namespace SITL; // forward conversion, copied from driver: void MS5611::convert_forward(int32_t D1, int32_t D2, float &P_Pa, float &Temp_C) { // _D1 and _D2 are stored as floats in driver const float _D1 = D1; const float _D2 = D2; float dT; float TEMP; float OFF; float SENS; dT = _D2-(((uint32_t)prom[5])<<8); TEMP = (dT * prom[6])/8388608; OFF = prom[2] * 65536.0f + (prom[4] * dT) / 128; SENS = prom[1] * 32768.0f + (prom[3] * dT) / 256; TEMP += 2000; if (TEMP < 2000) { // second order temperature compensation when under 20 degrees C float T2 = (dT*dT) / 0x80000000; float Aux = sq(TEMP-2000.0); float OFF2 = 2.5f*Aux; float SENS2 = 1.25f*Aux; if (TEMP < -1500) { // extra compensation for temperatures below -15C OFF2 += 7 * sq(TEMP+1500); SENS2 += sq(TEMP+1500) * 11.0*0.5; } TEMP = TEMP - T2; OFF = OFF - OFF2; SENS = SENS - SENS2; } P_Pa = (_D1*SENS/2097152 - OFF)/32768; Temp_C = TEMP * 0.01f; } void MS5611::convert(float P_Pa, float Temp_C, uint32_t &D1, uint32_t &D2) { const uint8_t Q1 = Qx_coeff[0]; const uint8_t Q2 = Qx_coeff[1]; const uint8_t Q3 = Qx_coeff[2]; const uint8_t Q4 = Qx_coeff[3]; const uint8_t Q5 = Qx_coeff[4]; const uint8_t Q6 = Qx_coeff[5]; const float TEMP = Temp_C * 100; // second order temperature compensation when under 20 degrees C if (TEMP < 2000) { // Solve the quadratic equation for D2 when TEMP < 2000 D2 = 128 * (2 * prom[5] - sqrt(sq(prom[6]) - 131072 * (TEMP - 2000)) + prom[6]); // Must compute the pressure compensation values using D2 const float dT = float(D2) - (prom[5] << Q5); float TEMP_forward = 2000 + (dT * prom[6]) / (1L << Q6); float OFF = prom[2] * (1L << Q2) + (prom[4] * dT) / (1L << Q4); float SENS = prom[1] * (1L << Q1) + (prom[3] * dT) / (1L << Q3); const float Aux = sq(TEMP_forward - 2000); float OFF2 = 2.5 * Aux; float SENS2 = 1.25 * Aux; if (TEMP < -1500) { // extra compensation for temperatures below -15C OFF2 += 7 * sq(TEMP_forward + 1500); SENS2 += sq(TEMP_forward + 1500) * 11.0 * 0.5; } OFF = OFF - OFF2; SENS = SENS - SENS2; D1 = ((P_Pa * float(1L << 15) + OFF) * float(1L << 21)) / SENS; } else { const float dT = (TEMP - 2000) * (1L << Q6) / prom[6]; const float OFF = prom[2] * (1L << Q2) + (prom[4] * dT) / (1L << Q4); const float SENS = prom[1] * (1L << Q1) + (prom[3] * dT) / (1L << Q3); D1 = ((P_Pa * float(1L << 15) + OFF) * float(1L << 21)) / SENS; D2 = dT + (prom[5] << Q5); } } void MS5611::check_conversion_accuracy(float P_Pa, float Temp_C, uint32_t D1, uint32_t D2) { float f_P_Pa; float f_Temp_C; convert_forward(D1, D2, f_P_Pa, f_Temp_C); if (fabs(f_P_Pa - P_Pa) > 0.2) { AP_HAL::panic("Invalid pressure conversion"); } if (fabs(f_Temp_C - Temp_C) > 0.02) { AP_HAL::panic("Invalid temperature conversion"); } } void MS5611::get_pressure_temperature_readings(float &P_Pa, float &Temp_C) { float sigma, delta, theta; float sim_alt = AP::sitl()->state.altitude; sim_alt += 2 * rand_float(); AP_Baro::SimpleAtmosphere(sim_alt * 0.001f, sigma, delta, theta); P_Pa = SSL_AIR_PRESSURE * delta; Temp_C = (SSL_AIR_TEMPERATURE * theta - C_TO_KELVIN) + AP::sitl()->temp_board_offset; // TO DO add in temperature adjustment by inheritting from AP_Baro_SITL_Generic? // AP_Baro_SITL::temperature_adjustment(P_Pa, Temp_C); // TO DO add in wind correction by inheritting from AP_Baro_SITL_Generic? // P_Pa += AP_Baro_SITL::wind_pressure_correction(instance); }