// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_MotorsMulticopter.cpp - ArduCopter multicopter motors library * Code by Randy Mackay and Robert Lefebvre. DIYDrones.com * */ #include "AP_MotorsMulticopter.h" #include extern const AP_HAL::HAL& hal; // parameters for the motor class const AP_Param::GroupInfo AP_MotorsMulticopter::var_info[] = { // 0 was used by TB_RATIO // 1,2,3 were used by throttle curve // @Param: SPIN_ARMED // @DisplayName: Motors always spin when armed // @Description: Controls whether motors always spin when armed (must be below THR_MIN) // @Values: 0:Do Not Spin,70:VerySlow,100:Slow,130:Medium,150:Fast // @User: Standard AP_GROUPINFO("SPIN_ARMED", 5, AP_MotorsMulticopter, _spin_when_armed, AP_MOTORS_SPIN_WHEN_ARMED), // @Param: YAW_HEADROOM // @DisplayName: Matrix Yaw Min // @Description: Yaw control is given at least this pwm range // @Range: 0 500 // @Units: pwm // @User: Advanced AP_GROUPINFO("YAW_HEADROOM", 6, AP_MotorsMulticopter, _yaw_headroom, AP_MOTORS_YAW_HEADROOM_DEFAULT), // 7 was THR_LOW_CMP // @Param: THST_EXPO // @DisplayName: Thrust Curve Expo // @Description: Motor thrust curve exponent (from 0 for linear to 1.0 for second order curve) // @Range: 0.25 0.8 // @User: Advanced AP_GROUPINFO("THST_EXPO", 8, AP_MotorsMulticopter, _thrust_curve_expo, AP_MOTORS_THST_EXPO_DEFAULT), // @Param: THST_MAX // @DisplayName: Thrust Curve Max // @Description: Point at which the thrust saturates // @Values: 0.9:Low, 1.0:High // @User: Advanced AP_GROUPINFO("THST_MAX", 9, AP_MotorsMulticopter, _thrust_curve_max, AP_MOTORS_THST_MAX_DEFAULT), // @Param: THST_BAT_MAX // @DisplayName: Battery voltage compensation maximum voltage // @Description: Battery voltage compensation maximum voltage (voltage above this will have no additional scaling effect on thrust). Recommend 4.4 * cell count, 0 = Disabled // @Range: 6 35 // @Units: Volts // @User: Advanced AP_GROUPINFO("THST_BAT_MAX", 10, AP_MotorsMulticopter, _batt_voltage_max, AP_MOTORS_THST_BAT_MAX_DEFAULT), // @Param: THST_BAT_MIN // @DisplayName: Battery voltage compensation minimum voltage // @Description: Battery voltage compensation minimum voltage (voltage below this will have no additional scaling effect on thrust). Recommend 3.5 * cell count, 0 = Disabled // @Range: 6 35 // @Units: Volts // @User: Advanced AP_GROUPINFO("THST_BAT_MIN", 11, AP_MotorsMulticopter, _batt_voltage_min, AP_MOTORS_THST_BAT_MIN_DEFAULT), // @Param: CURR_MAX // @DisplayName: Motor Current Max // @Description: Maximum current over which maximum throttle is limited (0 = Disabled) // @Range: 0 200 // @Units: Amps // @User: Advanced AP_GROUPINFO("CURR_MAX", 12, AP_MotorsMulticopter, _batt_current_max, AP_MOTORS_CURR_MAX_DEFAULT), // @Param: THR_MIX_MIN // @DisplayName: Throttle Mix Minimum // @Description: Throttle vs attitude control prioritisation used when landing (higher values mean we prioritise attitude control over throttle) // @Range: 0.1 0.25 // @User: Advanced AP_GROUPINFO("THR_MIX_MIN", 13, AP_MotorsMulticopter, _thr_mix_min, AP_MOTORS_THR_MIX_MIN_DEFAULT), // @Param: THR_MIX_MAX // @DisplayName: Throttle Mix Maximum // @Description: Throttle vs attitude control prioritisation used during active flight (higher values mean we prioritise attitude control over throttle) // @Range: 0.5 0.9 // @User: Advanced AP_GROUPINFO("THR_MIX_MAX", 14, AP_MotorsMulticopter, _thr_mix_max, AP_MOTORS_THR_MIX_MAX_DEFAULT), AP_GROUPEND }; // Constructor AP_MotorsMulticopter::AP_MotorsMulticopter(uint16_t loop_rate, uint16_t speed_hz) : AP_Motors(loop_rate, speed_hz), _throttle_rpy_mix_desired(AP_MOTORS_THR_LOW_CMP_DEFAULT), _throttle_rpy_mix(AP_MOTORS_THR_LOW_CMP_DEFAULT), _min_throttle(AP_MOTORS_DEFAULT_MIN_THROTTLE), _hover_out(AP_MOTORS_DEFAULT_MID_THROTTLE), _throttle_radio_min(1100), _throttle_radio_max(1900), _batt_voltage_resting(0.0f), _batt_current_resting(0.0f), _batt_resistance(0.0f), _batt_timer(0), _lift_max(1.0f), _throttle_limit(1.0f) { AP_Param::setup_object_defaults(this, var_info); // disable all motors by default memset(motor_enabled, false, sizeof(motor_enabled)); // setup battery voltage filtering _batt_voltage_filt.set_cutoff_frequency(AP_MOTORS_BATT_VOLT_FILT_HZ); _batt_voltage_filt.reset(1.0f); }; // output - sends commands to the motors void AP_MotorsMulticopter::output() { // update throttle filter update_throttle_filter(); // update battery resistance update_battery_resistance(); // calc filtered battery voltage and lift_max update_lift_max_from_batt_voltage(); // run spool logic output_logic(); // calculate thrust output_armed_stabilizing(); // convert rpy_thrust values to pwm output_to_motors(); }; // update the throttle input filter void AP_MotorsMulticopter::update_throttle_filter() { if (armed()) { _throttle_filter.apply(_throttle_in, 1.0f/_loop_rate); // constrain filtered throttle if (_throttle_filter.get() < 0.0f) { _throttle_filter.reset(0.0f); } if (_throttle_filter.get() > 1.0f) { _throttle_filter.reset(1.0f); } } else { _throttle_filter.reset(0.0f); } } // return current_limit as a number from 0 ~ 1 in the range throttle_min to throttle_max //todo: replace this with a variable P term float AP_MotorsMulticopter::get_current_limit_max_throttle() { // return maximum if current limiting is disabled if (_batt_current_max <= 0) { _throttle_limit = 1.0f; return 1.0f; } // remove throttle limit if disarmed if (!_flags.armed) { _throttle_limit = 1.0f; return 1.0f; } float batt_current_ratio = _batt_current/_batt_current_max; _throttle_limit += AP_MOTORS_CURRENT_LIMIT_P*(1.0f - batt_current_ratio)/_loop_rate; // throttle limit drops to 20% between hover and full throttle _throttle_limit = constrain_float(_throttle_limit, 0.2f, 1.0f); // limit max throttle float throttle_thrust_hover = get_hover_throttle_as_high_end_pct(); return throttle_thrust_hover + ((1.0-throttle_thrust_hover)*_throttle_limit); } // apply_thrust_curve_and_volt_scaling - returns throttle in the range 0 ~ 1 float AP_MotorsMulticopter::apply_thrust_curve_and_volt_scaling(float thrust) const { float throttle_ratio = thrust; // apply thrust curve - domain 0.0 to 1.0, range 0.0 to 1.0 if (_thrust_curve_expo > 0.0f){ throttle_ratio = ((_thrust_curve_expo-1.0f) + safe_sqrt((1.0f-_thrust_curve_expo)*(1.0f-_thrust_curve_expo) + 4.0f*_thrust_curve_expo*_lift_max*thrust))/(2.0f*_thrust_curve_expo*_batt_voltage_filt.get()); } // scale to maximum thrust point throttle_ratio *= _thrust_curve_max; return constrain_float(throttle_ratio, 0.0f, _thrust_curve_max); } // update_lift_max from battery voltage - used for voltage compensation void AP_MotorsMulticopter::update_lift_max_from_batt_voltage() { // sanity check battery_voltage_min is not too small // if disabled or misconfigured exit immediately if((_batt_voltage_max <= 0) || (_batt_voltage_min >= _batt_voltage_max) || (_batt_voltage < 0.25f*_batt_voltage_min)) { _batt_voltage_filt.reset(1.0f); _lift_max = 1.0f; return; } _batt_voltage_min = MAX(_batt_voltage_min, _batt_voltage_max * 0.6f); // add current based voltage sag to battery voltage float batt_voltage = _batt_voltage + _batt_current * _batt_resistance; batt_voltage = constrain_float(batt_voltage, _batt_voltage_min, _batt_voltage_max); // filter at 0.5 Hz float bvf = _batt_voltage_filt.apply(batt_voltage/_batt_voltage_max, 1.0f/_loop_rate); // calculate lift max _lift_max = bvf*(1-_thrust_curve_expo) + _thrust_curve_expo*bvf*bvf; } // update_battery_resistance - calculate battery resistance when throttle is above hover_out void AP_MotorsMulticopter::update_battery_resistance() { // if disarmed reset resting voltage and current if (!_flags.armed) { _batt_voltage_resting = _batt_voltage; _batt_current_resting = _batt_current; _batt_timer = 0; } else { // update battery resistance when throttle is over hover throttle if ((_batt_timer < 400) && ((_batt_current_resting*2.0f) < _batt_current)) { if (get_throttle() >= _hover_out) { // filter reaches 90% in 1/4 the test time _batt_resistance += 0.05f*(( (_batt_voltage_resting-_batt_voltage)/(_batt_current-_batt_current_resting) ) - _batt_resistance); _batt_timer += 1; } else { // initialize battery resistance to prevent change in resting voltage estimate _batt_resistance = ((_batt_voltage_resting-_batt_voltage)/(_batt_current-_batt_current_resting)); } } } } // update_throttle_rpy_mix - slew set_throttle_rpy_mix to requested value void AP_MotorsMulticopter::update_throttle_rpy_mix() { // slew _throttle_rpy_mix to _throttle_rpy_mix_desired if (_throttle_rpy_mix < _throttle_rpy_mix_desired) { // increase quickly (i.e. from 0.1 to 0.9 in 0.4 seconds) _throttle_rpy_mix += MIN(2.0f/_loop_rate, _throttle_rpy_mix_desired-_throttle_rpy_mix); } else if (_throttle_rpy_mix > _throttle_rpy_mix_desired) { // reduce more slowly (from 0.9 to 0.1 in 1.6 seconds) _throttle_rpy_mix -= MIN(0.5f/_loop_rate, _throttle_rpy_mix-_throttle_rpy_mix_desired); } _throttle_rpy_mix = constrain_float(_throttle_rpy_mix, 0.1f, 1.0f); } float AP_MotorsMulticopter::get_hover_throttle_as_high_end_pct() const { return ((float)_hover_out / (1000.0f - _min_throttle)); } float AP_MotorsMulticopter::get_compensation_gain() const { // avoid divide by zero if (_lift_max <= 0.0f) { return 1.0f; } float ret = 1.0f / _lift_max; #if AP_MOTORS_DENSITY_COMP == 1 // air density ratio is increasing in density / decreasing in altitude if (_air_density_ratio > 0.3f && _air_density_ratio < 1.5f) { ret *= 1.0f / constrain_float(_air_density_ratio,0.5f,1.25f); } #endif return ret; } int16_t AP_MotorsMulticopter::calc_thrust_to_pwm(float thrust_in) const { return constrain_int16((_throttle_radio_min + _min_throttle + apply_thrust_curve_and_volt_scaling(thrust_in) * ( _throttle_radio_max - (_throttle_radio_min + _min_throttle))), _throttle_radio_min + _min_throttle, _throttle_radio_max); } // set_throttle_range - sets the minimum throttle that will be sent to the engines when they're not off (i.e. to prevents issues with some motors spinning and some not at very low throttle) // also sets throttle channel minimum and maximum pwm void AP_MotorsMulticopter::set_throttle_range(uint16_t min_throttle, int16_t radio_min, int16_t radio_max) { _throttle_radio_min = radio_min; _throttle_radio_max = radio_max; _min_throttle = (float)min_throttle * ((_throttle_radio_max - _throttle_radio_min) / 1000.0f); } void AP_MotorsMulticopter::output_logic() { // force desired and current spool mode if disarmed or not interlocked if (!_flags.armed || !_flags.interlock) { _spool_desired = DESIRED_SHUT_DOWN; _multicopter_flags.spool_mode = SHUT_DOWN; } switch (_multicopter_flags.spool_mode) { case SHUT_DOWN: // Motors should be stationary. // Servos set to their trim values or in a test condition. // set limits flags limit.roll_pitch = true; limit.yaw = true; limit.throttle_lower = true; limit.throttle_upper = true; // make sure the motors are spooling in the correct direction if(_spool_desired != DESIRED_SHUT_DOWN){ _multicopter_flags.spool_mode = SPIN_WHEN_ARMED; break; } // set and increment ramp variables _throttle_low_end_pct = 0.0f; _throttle_thrust_max = 0.0f; _throttle_rpy_mix = 0.0f; _throttle_rpy_mix_desired = 0.0f; break; case SPIN_WHEN_ARMED:{ // Motors should be stationary or at spin when armed. // Servoes should be moving to correct the current attitude. // set limits flags limit.roll_pitch = true; limit.yaw = true; limit.throttle_lower = true; limit.throttle_upper = true; // set and increment ramp variables float spool_step = 1.0f/(AP_MOTORS_SPOOL_UP_TIME*_loop_rate); if(_spool_desired == DESIRED_SHUT_DOWN){ _throttle_low_end_pct -= spool_step; } else if(_spool_desired == DESIRED_THROTTLE_UNLIMITED ){ _throttle_low_end_pct += spool_step; }else{ _throttle_low_end_pct += constrain_float(spin_when_armed_low_end_pct()-_throttle_low_end_pct, -spool_step, spool_step); } _throttle_thrust_max = 0.0f; _throttle_rpy_mix = 0.0f; _throttle_rpy_mix_desired = 0.0f; // constrain ramp value and update mode if (_throttle_low_end_pct <= 0.0f) { _throttle_low_end_pct = 0.0f; _multicopter_flags.spool_mode = SHUT_DOWN; } else if (_throttle_low_end_pct >= 1.0f) { _throttle_low_end_pct = 1.0f; _multicopter_flags.spool_mode = SPOOL_UP; } break; } case SPOOL_UP: // Maximum throttle should move from minimum to maximum. // Servoes should exhibit normal flight behavior. // initialize limits flags limit.roll_pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // make sure the motors are spooling in the correct direction if(_spool_desired != DESIRED_THROTTLE_UNLIMITED ){ _multicopter_flags.spool_mode = SPOOL_DOWN; break; } // set and increment ramp variables _throttle_low_end_pct = 1.0f; _throttle_thrust_max += 1.0f/(AP_MOTORS_SPOOL_UP_TIME*_loop_rate); _throttle_rpy_mix = 0.0f; _throttle_rpy_mix_desired = 0.0f; // constrain ramp value and update mode if (_throttle_thrust_max >= MIN(get_throttle(), get_current_limit_max_throttle())) { _throttle_thrust_max = get_current_limit_max_throttle(); _multicopter_flags.spool_mode = THROTTLE_UNLIMITED; } else if (_throttle_thrust_max < 0.0f) { _throttle_thrust_max = 0.0f; } break; case THROTTLE_UNLIMITED: // Throttle should exhibit normal flight behavior. // Servoes should exhibit normal flight behavior. // initialize limits flags limit.roll_pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // make sure the motors are spooling in the correct direction if(_spool_desired != DESIRED_THROTTLE_UNLIMITED ){ _multicopter_flags.spool_mode = SPOOL_DOWN; break; } // set and increment ramp variables _throttle_low_end_pct = 1.0f; _throttle_thrust_max = get_current_limit_max_throttle(); update_throttle_rpy_mix(); break; case SPOOL_DOWN: // Maximum throttle should move from maximum to minimum. // Servoes should exhibit normal flight behavior. // initialize limits flags limit.roll_pitch = false; limit.yaw = false; limit.throttle_lower = false; limit.throttle_upper = false; // make sure the motors are spooling in the correct direction if(_spool_desired == DESIRED_THROTTLE_UNLIMITED ){ _multicopter_flags.spool_mode = SPOOL_UP; break; } // set and increment ramp variables _throttle_low_end_pct = 1.0f; _throttle_thrust_max -= 1.0f/(AP_MOTORS_SPOOL_UP_TIME*_loop_rate); _throttle_rpy_mix -= 1.0f/(AP_MOTORS_SPOOL_UP_TIME*_loop_rate); _throttle_rpy_mix_desired = _throttle_rpy_mix; // constrain ramp value and update mode if (_throttle_thrust_max <= 0.0f){ _throttle_thrust_max = 0.0f; } if (_throttle_rpy_mix <= 0.0f){ _throttle_rpy_mix = 0.0f; } if (_throttle_thrust_max >= get_current_limit_max_throttle()) { _throttle_thrust_max = get_current_limit_max_throttle(); } else if (is_zero(_throttle_thrust_max) && is_zero(_throttle_rpy_mix)) { _multicopter_flags.spool_mode = SPIN_WHEN_ARMED; } break; } } // throttle_pass_through - passes provided pwm directly to all motors - dangerous but used for initialising ESCs // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsMulticopter::throttle_pass_through(int16_t pwm) { if (armed()) { // send the pilot's input directly to each enabled motor hal.rcout->cork(); for (uint16_t i=0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { rc_write(i, pwm); } } hal.rcout->push(); } }