// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "Plane.h" /* the vehicle class has its own var table for TUNE_PARAM so it can have separate parameter docs for the list of available parameters */ const AP_Param::GroupInfo AP_Tuning_Plane::var_info[] = { // @Param: PARAM // @DisplayName: Transmitter tuning parameter or set of parameters // @Description: This sets which parameter or set of parameters will be tuned. Values greater than 100 indicate a set of parameters rather than a single parameter. Parameters less than 50 are for QuadPlane vertical lift motors only. // @Values: 0:None,1:RateRollPI,2:RateRollP,3:RateRollI,4:RateRollD,5:RatePitchPI,6:RatePitchP,7:RatePitchI,8:RatePitchD,9:RateYawPI,10:RateYawP,11:RateYawI,12:RateYawD,13:AngleRollP,14:AnglePitchP,15:AngleYawP,16:PosXYP,17:PosZP,18:VelXYP,19:VelXYI,20:VelZP,21:AccelZP,22:AccelZI,23:AccelZD,50:FixedWingRollP,51:FixedWingRollI,52:FixedWingRollD,53:FixedWingRollFF,54:FixedWingPitchP,55:FixedWingPitchI,56:FixedWingPitchD,57:FixedWingPitchFF,101:Set_RateRollPitch,102:Set_RateRoll,103:Set_RatePitch,104:Set_RateYaw,105:Set_AngleRollPitch,106:Set_VelXY,107:Set_AccelZ // @User: Standard AP_GROUPINFO("PARAM", 1, AP_Tuning_Plane, parmset, 0), // the rest of the parameters are from AP_Tuning AP_NESTEDGROUPINFO(AP_Tuning, 0), AP_GROUPEND }; /* tables of tuning sets */ const uint8_t AP_Tuning_Plane::tuning_set_rate_roll_pitch[] = { TUNING_RATE_ROLL_D, TUNING_RATE_ROLL_PI, TUNING_RATE_PITCH_D, TUNING_RATE_PITCH_PI}; const uint8_t AP_Tuning_Plane::tuning_set_rate_roll[] = { TUNING_RATE_ROLL_D, TUNING_RATE_ROLL_PI }; const uint8_t AP_Tuning_Plane::tuning_set_rate_pitch[] = { TUNING_RATE_PITCH_D, TUNING_RATE_PITCH_PI }; const uint8_t AP_Tuning_Plane::tuning_set_rate_yaw[] = { TUNING_RATE_YAW_P, TUNING_RATE_YAW_I, TUNING_RATE_YAW_D }; const uint8_t AP_Tuning_Plane::tuning_set_ang_roll_pitch[] = { TUNING_ANG_ROLL_P, TUNING_ANG_PITCH_P }; const uint8_t AP_Tuning_Plane::tuning_set_vxy[] = { TUNING_VXY_P, TUNING_VXY_I }; const uint8_t AP_Tuning_Plane::tuning_set_az[] = { TUNING_AZ_P, TUNING_AZ_I, TUNING_AZ_D }; // macro to prevent getting the array length wrong #define TUNING_ARRAY(v) ARRAY_SIZE(v), v // list of tuning sets const AP_Tuning_Plane::tuning_set AP_Tuning_Plane::tuning_sets[] = { { TUNING_SET_RATE_ROLL_PITCH, TUNING_ARRAY(tuning_set_rate_roll_pitch) }, { TUNING_SET_RATE_ROLL, TUNING_ARRAY(tuning_set_rate_roll) }, { TUNING_SET_RATE_PITCH, TUNING_ARRAY(tuning_set_rate_pitch) }, { TUNING_SET_RATE_YAW, TUNING_ARRAY(tuning_set_rate_yaw) }, { TUNING_SET_ANG_ROLL_PITCH, TUNING_ARRAY(tuning_set_ang_roll_pitch) }, { TUNING_SET_VXY, TUNING_ARRAY(tuning_set_vxy) }, { TUNING_SET_AZ, TUNING_ARRAY(tuning_set_az) }, { 0, 0, nullptr } }; /* table of tuning names */ const AP_Tuning_Plane::tuning_name AP_Tuning_Plane::tuning_names[] = { { TUNING_RATE_ROLL_PI, "RateRollPI" }, { TUNING_RATE_ROLL_P, "RateRollP" }, { TUNING_RATE_ROLL_I, "RateRollI" }, { TUNING_RATE_ROLL_D, "RateRollD" }, { TUNING_RATE_PITCH_PI,"RatePitchPI" }, { TUNING_RATE_PITCH_P, "RatePitchP" }, { TUNING_RATE_PITCH_I, "RatePitchI" }, { TUNING_RATE_PITCH_D, "RatePitchD" }, { TUNING_RATE_YAW_PI, "RateYawPI" }, { TUNING_RATE_YAW_P, "RateYawP" }, { TUNING_RATE_YAW_I, "RateYawI" }, { TUNING_RATE_YAW_D, "RateYawD" }, { TUNING_ANG_ROLL_P, "AngRollP" }, { TUNING_ANG_PITCH_P, "AngPitchP" }, { TUNING_ANG_YAW_P, "AngYawP" }, { TUNING_PXY_P, "PXY_P" }, { TUNING_PZ_P, "PZ_P" }, { TUNING_VXY_P, "VXY_P" }, { TUNING_VXY_I, "VXY_I" }, { TUNING_VZ_P, "VZ_P" }, { TUNING_AZ_P, "RateAZ_P" }, { TUNING_AZ_I, "RateAZ_I" }, { TUNING_AZ_D, "RateAZ_D" }, { TUNING_RLL_P, "RollP" }, { TUNING_RLL_I, "RollI" }, { TUNING_RLL_D, "RollD" }, { TUNING_RLL_FF, "RollFF" }, { TUNING_PIT_P, "PitchP" }, { TUNING_PIT_I, "PitchI" }, { TUNING_PIT_D, "PitchD" }, { TUNING_PIT_FF, "PitchFF" }, { TUNING_NONE, nullptr } }; /* get a pointer to an AP_Float for a parameter, or NULL on fail */ AP_Float *AP_Tuning_Plane::get_param_pointer(uint8_t parm) { if (parm < TUNING_FIXED_WING_BASE && !plane.quadplane.available()) { // quadplane tuning options not available return nullptr; } switch(parm) { case TUNING_RATE_ROLL_PI: // use P for initial value when tuning PI return &plane.quadplane.attitude_control->get_rate_roll_pid().kP(); case TUNING_RATE_ROLL_P: return &plane.quadplane.attitude_control->get_rate_roll_pid().kP(); case TUNING_RATE_ROLL_I: return &plane.quadplane.attitude_control->get_rate_roll_pid().kI(); case TUNING_RATE_ROLL_D: return &plane.quadplane.attitude_control->get_rate_roll_pid().kD(); case TUNING_RATE_PITCH_PI: return &plane.quadplane.attitude_control->get_rate_pitch_pid().kP(); case TUNING_RATE_PITCH_P: return &plane.quadplane.attitude_control->get_rate_pitch_pid().kP(); case TUNING_RATE_PITCH_I: return &plane.quadplane.attitude_control->get_rate_pitch_pid().kI(); case TUNING_RATE_PITCH_D: return &plane.quadplane.attitude_control->get_rate_pitch_pid().kD(); case TUNING_RATE_YAW_PI: return &plane.quadplane.attitude_control->get_rate_yaw_pid().kP(); case TUNING_RATE_YAW_P: return &plane.quadplane.attitude_control->get_rate_yaw_pid().kP(); case TUNING_RATE_YAW_I: return &plane.quadplane.attitude_control->get_rate_yaw_pid().kI(); case TUNING_RATE_YAW_D: return &plane.quadplane.attitude_control->get_rate_yaw_pid().kD(); case TUNING_ANG_ROLL_P: return &plane.quadplane.attitude_control->get_angle_roll_p().kP(); case TUNING_ANG_PITCH_P: return &plane.quadplane.attitude_control->get_angle_pitch_p().kP(); case TUNING_ANG_YAW_P: return &plane.quadplane.attitude_control->get_angle_yaw_p().kP(); case TUNING_PXY_P: return &plane.quadplane.p_pos_xy.kP(); case TUNING_PZ_P: return &plane.quadplane.p_alt_hold.kP(); case TUNING_VXY_P: return &plane.quadplane.pi_vel_xy.kP(); case TUNING_VXY_I: return &plane.quadplane.pi_vel_xy.kI(); case TUNING_VZ_P: return &plane.quadplane.p_vel_z.kP(); case TUNING_AZ_P: return &plane.quadplane.pid_accel_z.kP(); case TUNING_AZ_I: return &plane.quadplane.pid_accel_z.kI(); case TUNING_AZ_D: return &plane.quadplane.pid_accel_z.kD(); // fixed wing tuning parameters case TUNING_RLL_P: return &plane.rollController.kP(); case TUNING_RLL_I: return &plane.rollController.kI(); case TUNING_RLL_D: return &plane.rollController.kD(); case TUNING_RLL_FF: return &plane.rollController.kFF(); case TUNING_PIT_P: return &plane.pitchController.kP(); case TUNING_PIT_I: return &plane.pitchController.kI(); case TUNING_PIT_D: return &plane.pitchController.kD(); case TUNING_PIT_FF: return &plane.pitchController.kFF(); } return nullptr; } /* save a parameter */ void AP_Tuning_Plane::save_value(uint8_t parm) { switch(parm) { // special handling of dual-parameters case TUNING_RATE_ROLL_PI: save_value(TUNING_RATE_ROLL_P); save_value(TUNING_RATE_ROLL_I); break; case TUNING_RATE_PITCH_PI: save_value(TUNING_RATE_PITCH_P); save_value(TUNING_RATE_PITCH_I); break; default: AP_Float *f = get_param_pointer(parm); if (f != nullptr) { f->save(); } break; } } /* set a parameter */ void AP_Tuning_Plane::set_value(uint8_t parm, float value) { switch(parm) { // special handling of dual-parameters case TUNING_RATE_ROLL_PI: set_value(TUNING_RATE_ROLL_P, value); set_value(TUNING_RATE_ROLL_I, value); break; case TUNING_RATE_PITCH_PI: set_value(TUNING_RATE_PITCH_P, value); set_value(TUNING_RATE_PITCH_I, value); break; default: AP_Float *f = get_param_pointer(parm); if (f != nullptr) { f->set_and_notify(value); } break; } } /* reload a parameter */ void AP_Tuning_Plane::reload_value(uint8_t parm) { switch(parm) { // special handling of dual-parameters case TUNING_RATE_ROLL_PI: reload_value(TUNING_RATE_ROLL_P); reload_value(TUNING_RATE_ROLL_I); break; case TUNING_RATE_PITCH_PI: reload_value(TUNING_RATE_PITCH_P); reload_value(TUNING_RATE_PITCH_I); break; default: AP_Float *f = get_param_pointer(parm); if (f != nullptr) { f->load(); } break; } } /* return current controller error */ float AP_Tuning_Plane::controller_error(uint8_t parm) { if (!plane.quadplane.available()) { return 0; } // in general a good tune will have rmsP significantly greater // than rmsD. Otherwise it is too easy to push D too high while // tuning a quadplane and end up with D dominating const float max_P_D_ratio = 3.0f; switch(parm) { // special handling of dual-parameters case TUNING_RATE_ROLL_PI: case TUNING_RATE_ROLL_P: case TUNING_RATE_ROLL_I: return plane.quadplane.attitude_control->control_monitor_rms_output_roll(); case TUNING_RATE_ROLL_D: { // special case for D term to keep it well below P float rms_P = plane.quadplane.attitude_control->control_monitor_rms_output_roll_P(); float rms_D = plane.quadplane.attitude_control->control_monitor_rms_output_roll_D(); if (rms_P < rms_D * max_P_D_ratio) { return max_P_D_ratio; } return rms_P+rms_D; } case TUNING_RATE_PITCH_PI: case TUNING_RATE_PITCH_P: case TUNING_RATE_PITCH_I: return plane.quadplane.attitude_control->control_monitor_rms_output_pitch(); case TUNING_RATE_PITCH_D: { // special case for D term to keep it well below P float rms_P = plane.quadplane.attitude_control->control_monitor_rms_output_pitch_P(); float rms_D = plane.quadplane.attitude_control->control_monitor_rms_output_pitch_D(); if (rms_P < rms_D * max_P_D_ratio) { return max_P_D_ratio; } return rms_P+rms_D; } case TUNING_RATE_YAW_PI: case TUNING_RATE_YAW_P: case TUNING_RATE_YAW_I: case TUNING_RATE_YAW_D: return plane.quadplane.attitude_control->control_monitor_rms_output_yaw(); default: // no special handler return 0; } }