/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#pragma once
#include
#include
#define ACCEL_CAL_MAX_NUM_PARAMS 9
#define ACCEL_CAL_TOLERANCE 0.1
#define MAX_ITERATIONS 50
enum accel_cal_status_t {
ACCEL_CAL_NOT_STARTED=0,
ACCEL_CAL_WAITING_FOR_ORIENTATION=1,
ACCEL_CAL_COLLECTING_SAMPLE=2,
ACCEL_CAL_SUCCESS=3,
ACCEL_CAL_FAILED=4
};
enum accel_cal_fit_type_t {
ACCEL_CAL_AXIS_ALIGNED_ELLIPSOID=0,
ACCEL_CAL_ELLIPSOID=1
};
class AccelCalibrator {
public:
AccelCalibrator();
//Select options, initialise variables and initiate accel calibration
void start(enum accel_cal_fit_type_t fit_type = ACCEL_CAL_AXIS_ALIGNED_ELLIPSOID, uint8_t num_samples = 6, float sample_time = 0.5f);
void start(enum accel_cal_fit_type_t fit_type, uint8_t num_samples, float sample_time, Vector3f offset, Vector3f diag, Vector3f offdiag);
// set Accel calibrator status to make itself ready for future accel cals
void clear();
// returns true if accel calibrator is running
bool running();
// set Accel calibrator to start collecting samples in the next cycle
void collect_sample();
// check if client's calibrator is active
void check_for_timeout();
// get diag,offset or offdiag parameters as per the selected fitting surface or request
void get_calibration(Vector3f& offset) const;
void get_calibration(Vector3f& offset, Vector3f& diag) const;
void get_calibration(Vector3f& offset, Vector3f& diag, Vector3f& offdiag) const;
// collect and avg sample to be passed onto LSQ estimator after all requisite orientations are done
void new_sample(const Vector3f& delta_velocity, float dt);
// interface for LSq estimator to read sample buffer sent after conversion from delta velocity
// to averaged acc over time
bool get_sample(uint8_t i, Vector3f& s) const;
// returns true and sample corrected with diag offdiag parameters as calculated by LSq estimation procedure
// returns false if no correct parameter exists to be applied along with existing sample without corrections
bool get_sample_corrected(uint8_t i, Vector3f& s) const;
// set tolerance bar for parameter fitness value to cross so as to be deemed as correct values
void set_tolerance(float tolerance) { _conf_tolerance = tolerance; }
// returns current state of accel calibrators
enum accel_cal_status_t get_status() const { return _status; }
// returns number of samples collected
uint8_t get_num_samples_collected() const { return _samples_collected; }
// returns mean squared fitness of sample points to the selected surface
float get_fitness() const { return _fitness; }
struct param_t {
Vector3f offset;
Vector3f diag;
Vector3f offdiag;
};
private:
struct AccelSample {
Vector3f delta_velocity;
float delta_time;
};
typedef VectorN VectorP;
union param_u {
struct param_t s;
VectorN a;
param_u() : a{}
{
static_assert(sizeof(*this) == sizeof(struct param_t),
"Invalid union members: sizes do not match");
}
};
//configuration
uint8_t _conf_num_samples;
float _conf_sample_time;
enum accel_cal_fit_type_t _conf_fit_type;
float _conf_tolerance;
// state
accel_cal_status_t _status;
struct AccelSample* _sample_buffer;
uint8_t _samples_collected;
union param_u _param;
float _fitness;
uint32_t _last_samp_frag_collected_ms;
float _min_sample_dist;
// private methods
// check sanity of including the sample and add it to buffer if test is passed
bool accept_sample(const Vector3f& sample);
// reset to calibrator state before the start of calibration
void reset_state();
// sets status of calibrator and takes appropriate actions
void set_status(enum accel_cal_status_t);
// determines if the result is acceptable
bool accept_result() const;
// returns number of parameters are required for selected Fit type
uint8_t get_num_params() const;
// Function related to Gauss Newton Least square regression process
float calc_residual(const Vector3f& sample, const struct param_t& params) const;
float calc_mean_squared_residuals(const struct param_t& params) const;
void calc_jacob(const Vector3f& sample, const struct param_t& params, VectorP& ret) const;
void run_fit(uint8_t max_iterations, float& fitness);
};