/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #include #include #define ACCEL_CAL_MAX_NUM_PARAMS 9 #define ACCEL_CAL_TOLERANCE 0.1 #define MAX_ITERATIONS 50 enum accel_cal_status_t { ACCEL_CAL_NOT_STARTED=0, ACCEL_CAL_WAITING_FOR_ORIENTATION=1, ACCEL_CAL_COLLECTING_SAMPLE=2, ACCEL_CAL_SUCCESS=3, ACCEL_CAL_FAILED=4 }; enum accel_cal_fit_type_t { ACCEL_CAL_AXIS_ALIGNED_ELLIPSOID=0, ACCEL_CAL_ELLIPSOID=1 }; class AccelCalibrator { public: AccelCalibrator(); //Select options, initialise variables and initiate accel calibration void start(enum accel_cal_fit_type_t fit_type = ACCEL_CAL_AXIS_ALIGNED_ELLIPSOID, uint8_t num_samples = 6, float sample_time = 0.5f); void start(enum accel_cal_fit_type_t fit_type, uint8_t num_samples, float sample_time, Vector3f offset, Vector3f diag, Vector3f offdiag); // set Accel calibrator status to make itself ready for future accel cals void clear(); // returns true if accel calibrator is running bool running(); // set Accel calibrator to start collecting samples in the next cycle void collect_sample(); // check if client's calibrator is active void check_for_timeout(); // get diag,offset or offdiag parameters as per the selected fitting surface or request void get_calibration(Vector3f& offset) const; void get_calibration(Vector3f& offset, Vector3f& diag) const; void get_calibration(Vector3f& offset, Vector3f& diag, Vector3f& offdiag) const; // collect and avg sample to be passed onto LSQ estimator after all requisite orientations are done void new_sample(const Vector3f& delta_velocity, float dt); // interface for LSq estimator to read sample buffer sent after conversion from delta velocity // to averaged acc over time bool get_sample(uint8_t i, Vector3f& s) const; // returns true and sample corrected with diag offdiag parameters as calculated by LSq estimation procedure // returns false if no correct parameter exists to be applied along with existing sample without corrections bool get_sample_corrected(uint8_t i, Vector3f& s) const; // set tolerance bar for parameter fitness value to cross so as to be deemed as correct values void set_tolerance(float tolerance) { _conf_tolerance = tolerance; } // returns current state of accel calibrators enum accel_cal_status_t get_status() const { return _status; } // returns number of samples collected uint8_t get_num_samples_collected() const { return _samples_collected; } // returns mean squared fitness of sample points to the selected surface float get_fitness() const { return _fitness; } struct param_t { Vector3f offset; Vector3f diag; Vector3f offdiag; }; private: struct AccelSample { Vector3f delta_velocity; float delta_time; }; typedef VectorN VectorP; union param_u { struct param_t s; VectorN a; param_u() : a{} { static_assert(sizeof(*this) == sizeof(struct param_t), "Invalid union members: sizes do not match"); } }; //configuration uint8_t _conf_num_samples; float _conf_sample_time; enum accel_cal_fit_type_t _conf_fit_type; float _conf_tolerance; // state accel_cal_status_t _status; struct AccelSample* _sample_buffer; uint8_t _samples_collected; union param_u _param; float _fitness; uint32_t _last_samp_frag_collected_ms; float _min_sample_dist; // private methods // check sanity of including the sample and add it to buffer if test is passed bool accept_sample(const Vector3f& sample); // reset to calibrator state before the start of calibration void reset_state(); // sets status of calibrator and takes appropriate actions void set_status(enum accel_cal_status_t); // determines if the result is acceptable bool accept_result() const; // returns number of parameters are required for selected Fit type uint8_t get_num_params() const; // Function related to Gauss Newton Least square regression process float calc_residual(const Vector3f& sample, const struct param_t& params) const; float calc_mean_squared_residuals(const struct param_t& params) const; void calc_jacob(const Vector3f& sample, const struct param_t& params, VectorP& ret) const; void run_fit(uint8_t max_iterations, float& fitness); };