/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #define THISFIRMWARE "APMrover v2.20 JL NAUDIN" //New version of the APMrover for the APM v1 or APM v2 and magnetometer + SONAR // This is the APMrover firmware derived from the Arduplane v2.32 by Jean-Louis Naudin (JLN) /* Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Andrew Tridgell, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler, Jean-Louis Naudin Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier Please contribute your ideas! APMrover alpha version tester: Franco Borasio, Daniel Chapelat... This firmware is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. // // JLN updates: last update 2012-06-13 // DOLIST: //------------------------------------------------------------------------------------------------------------------------- // Dev Startup : 2012-04-21 // // 2012-06-13: use RangeFinder optical SharpGP2Y instead of ultrasonic sonar // 2012-05-13: added Test sonar // 2012-05-17: added speed_boost during straight line // 2012-05-17: New update about the throttle rate control based on the field test done by Franco Borasio (Thanks Franco..) // 2012-05-15: The Throttle rate can be controlled by the THROTTLE_SLEW_LIMIT (the value give the step increase, 1 = 0.1) // 2012-05-14: Update about mavlink library (now compatible with the latest version of mavlink) // 2012-05-14: Added option (hold roll to full right + SW7 ON/OFF) to init_home during the wp_list reset // 2012-05-13: Add ROV_SONAR_TRIG (default = 200 cm) // 2012-05-13: Restart_nav() added and heading bug correction, tested OK in the field // 2012-05-12: RTL then stop update - Tested in the field // 2012-05-11: The rover now STOP after the RTL... (special update for Franco...) // 2012-05-11: Added SONAR detection for obstacle avoidance (alpha version for SONAR testing) // 2012-05-04: Added #define LITE ENABLED for the APM1280 or APM2560 CPU IMUless version // 2012-05-03: Successful missions tests with a full APM2560 kit (GPS MT3329 + magnetometer HMC5883L) // 2012-05-03: removing stick mixing in auto mode // 2012-05-01: special update for rover about ground_course if compass is enabled // 2012-04-30: Successfully tested in autonomous nav with a waypoints list recorded in live mode // 2012-04-30: Now a full version for APM v1 or APM v2 with magnetometer // 2012-04-27: Cosmetic changes // 2012-04-26: Only one PID (pidNavRoll) for steering the wheel with nav_roll // 2012-04-26: Added ground_speed and ground_course variables in Update_GPS // 2012-04-26: Set GPS to 10 Hz (updated in the AP_GPS lib) // 2012-04-22: Tested on Traxxas Monster Jam Grinder XL-5 3602 // 2012-04-21: Roll set to wheels control and Throttle neutral to 50% (0 -100) - Forward>50, Backward<50 // // Radio setup: // APM INPUT (Rec = receiver) // Rec ch1: Roll // Rec ch2: Throttle // Rec ch3: Pitch // Rec ch4: Yaw // Rec ch5: not used // Rec ch6: not used // Rec ch7: Option channel to 2 positions switch // Rec ch8: Mode channel to 3 positions switch // APM OUTPUT // Ch1: Wheel servo (direction) // Ch2: not used // Ch3: to the motor ESC // Ch4: not used // // more infos about this experimental version: http://diydrones.com/profile/JeanLouisNaudin // ======================================================================================================= */ //////////////////////////////////////////////////////////////////////////////// // Header includes //////////////////////////////////////////////////////////////////////////////// // AVR runtime #include #include #include #include // Libraries #include #include #include #include // ArduPilot Mega RC Library #include // ArduPilot GPS library #include // Wayne Truchsess I2C lib #include // Arduino SPI lib #include // ArduPilot Mega Flash Memory Library #include // ArduPilot Mega Analog to Digital Converter Library #include // ArduPilot Mega polymorphic analog getter #include // ArduPilot Mega TimerProcess #include // ArduPilot barometer library #include // ArduPilot Mega Magnetometer Library #include // ArduPilot Mega Vector/Matrix math Library #include // Inertial Sensor (uncalibated IMU) Library #include // ArduPilot Mega IMU Library #include // ArduPilot Mega DCM Library #include // PID library #include // RC Channel Library #include // Range finder library #include // Filter library #include // Mode Filter from Filter library #include // Mode Filter from Filter library #include // APM relay #include // Camera/Antenna mount #include // MAVLink GCS definitions #include // Configuration #include "config.h" // Local modules #include "defines.h" #include "Parameters.h" #include "GCS.h" #include // ArduPilot Mega Declination Helper Library //////////////////////////////////////////////////////////////////////////////// // Serial ports //////////////////////////////////////////////////////////////////////////////// // // Note that FastSerial port buffers are allocated at ::begin time, // so there is not much of a penalty to defining ports that we don't // use. // FastSerialPort0(Serial); // FTDI/console FastSerialPort1(Serial1); // GPS port #if TELEMETRY_UART2 == ENABLED // solder bridge set to enable UART2 instead of USB MUX FastSerialPort2(Serial3); #else FastSerialPort3(Serial3); // Telemetry port for APM1 #endif //////////////////////////////////////////////////////////////////////////////// // ISR Registry //////////////////////////////////////////////////////////////////////////////// Arduino_Mega_ISR_Registry isr_registry; //////////////////////////////////////////////////////////////////////////////// // APM_RC_Class Instance //////////////////////////////////////////////////////////////////////////////// #if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 APM_RC_APM2 APM_RC; #else APM_RC_APM1 APM_RC; #endif //////////////////////////////////////////////////////////////////////////////// // Dataflash //////////////////////////////////////////////////////////////////////////////// #if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 DataFlash_APM2 DataFlash; #else DataFlash_APM1 DataFlash; #endif //////////////////////////////////////////////////////////////////////////////// // Parameters //////////////////////////////////////////////////////////////////////////////// // // Global parameters are all contained within the 'g' class. // static Parameters g; //////////////////////////////////////////////////////////////////////////////// // prototypes static void update_events(void); //////////////////////////////////////////////////////////////////////////////// // Sensors //////////////////////////////////////////////////////////////////////////////// // // There are three basic options related to flight sensor selection. // // - Normal flight mode. Real sensors are used. // - HIL Attitude mode. Most sensors are disabled, as the HIL // protocol supplies attitude information directly. // - HIL Sensors mode. Synthetic sensors are configured that // supply data from the simulation. // // All GPS access should be through this pointer. static GPS *g_gps; // flight modes convenience array static AP_Int8 *flight_modes = &g.flight_mode1; #if HIL_MODE == HIL_MODE_DISABLED // real sensors #if CONFIG_ADC == ENABLED static AP_ADC_ADS7844 adc; #endif #ifdef DESKTOP_BUILD AP_Baro_BMP085_HIL barometer; AP_Compass_HIL compass; #else #if CONFIG_BARO == AP_BARO_BMP085 # if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 static AP_Baro_BMP085 barometer(true); # else static AP_Baro_BMP085 barometer(false); # endif #elif CONFIG_BARO == AP_BARO_MS5611 static AP_Baro_MS5611 barometer; #endif static AP_Compass_HMC5843 compass; #endif // real GPS selection #if GPS_PROTOCOL == GPS_PROTOCOL_AUTO AP_GPS_Auto g_gps_driver(&Serial1, &g_gps); #elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA AP_GPS_NMEA g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF AP_GPS_SIRF g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX AP_GPS_UBLOX g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK AP_GPS_MTK g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16 AP_GPS_MTK16 g_gps_driver(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_NONE AP_GPS_None g_gps_driver(NULL); #else #error Unrecognised GPS_PROTOCOL setting. #endif // GPS PROTOCOL # if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000 AP_InertialSensor_MPU6000 ins( CONFIG_MPU6000_CHIP_SELECT_PIN ); # else AP_InertialSensor_Oilpan ins( &adc ); #endif // CONFIG_IMU_TYPE AP_IMU_INS imu( &ins ); #if QUATERNION_ENABLE == ENABLED AP_AHRS_Quaternion ahrs(&imu, g_gps); #else AP_AHRS_DCM ahrs(&imu, g_gps); #endif #elif HIL_MODE == HIL_MODE_SENSORS // sensor emulators AP_ADC_HIL adc; AP_Baro_BMP085_HIL barometer; AP_Compass_HIL compass; AP_GPS_HIL g_gps_driver(NULL); AP_InertialSensor_Oilpan ins( &adc ); AP_IMU_Shim imu; AP_AHRS_DCM ahrs(&imu, g_gps); #elif HIL_MODE == HIL_MODE_ATTITUDE AP_ADC_HIL adc; AP_IMU_Shim imu; // never used AP_AHRS_HIL ahrs(&imu, g_gps); AP_GPS_HIL g_gps_driver(NULL); AP_Compass_HIL compass; // never used AP_Baro_BMP085_HIL barometer; #else #error Unrecognised HIL_MODE setting. #endif // HIL MODE // we always have a timer scheduler AP_TimerProcess timer_scheduler; //////////////////////////////////////////////////////////////////////////////// // GCS selection //////////////////////////////////////////////////////////////////////////////// // GCS_MAVLINK gcs0; GCS_MAVLINK gcs3; //////////////////////////////////////////////////////////////////////////////// // SONAR selection //////////////////////////////////////////////////////////////////////////////// // ModeFilterInt16_Size5 sonar_mode_filter(2); #if CONFIG_SONAR == ENABLED /* #if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC AP_AnalogSource_ADC sonar_analog_source( &adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25); #elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN AP_AnalogSource_Arduino sonar_analog_source(CONFIG_SONAR_SOURCE_ANALOG_PIN); #endif AP_RangeFinder_MaxsonarXL sonar(&sonar_analog_source, &sonar_mode_filter); */ AP_AnalogSource_Arduino sonar_analog_source(A0); // use AN0 analog pin for APM2 on left AP_RangeFinder_SharpGP2Y sonar(&sonar_analog_source, &sonar_mode_filter); #endif //////////////////////////////////////////////////////////////////////////////// // PITOT selection //////////////////////////////////////////////////////////////////////////////// // #if CONFIG_PITOT_SOURCE == PITOT_SOURCE_ADC AP_AnalogSource_ADC pitot_analog_source( &adc, CONFIG_PITOT_SOURCE_ADC_CHANNEL, 1.0); #elif CONFIG_PITOT_SOURCE == PITOT_SOURCE_ANALOG_PIN AP_AnalogSource_Arduino pitot_analog_source(CONFIG_PITOT_SOURCE_ANALOG_PIN, 4.0); #endif // Barometer filter AverageFilterInt32_Size5 baro_filter; // filtered pitch acceleration AP_Relay relay; // Camera/Antenna mount tracking and stabilisation stuff // -------------------------------------- #if MOUNT == ENABLED AP_Mount camera_mount(g_gps, &dcm); #endif //////////////////////////////////////////////////////////////////////////////// // Global variables //////////////////////////////////////////////////////////////////////////////// // APM2 only #if USB_MUX_PIN > 0 static bool usb_connected; #endif static const char *comma = ","; static const char* flight_mode_strings[] = { "Manual", "Circle", "Learning", "", "", "FBW_A", "FBW_B", "", "", "", "Auto", "RTL", "Loiter", "", "", "", "", "", "", "", "", ""}; /* Radio values Channel assignments 1 Ailerons (rudder if no ailerons) 2 Elevator 3 Throttle 4 Rudder (if we have ailerons) 5 Aux5 6 Aux6 7 Aux7 8 Aux8/Mode Each Aux channel can be configured to have any of the available auxiliary functions assigned to it. See libraries/RC_Channel/RC_Channel_aux.h for more information */ //////////////////////////////////////////////////////////////////////////////// // Radio //////////////////////////////////////////////////////////////////////////////// // This is the state of the flight control system // There are multiple states defined such as MANUAL, FBW-A, AUTO byte control_mode = INITIALISING; // Used to maintain the state of the previous control switch position // This is set to -1 when we need to re-read the switch byte oldSwitchPosition; // This is used to enable the inverted flight feature bool inverted_flight = false; // These are trim values used for elevon control // For elevons radio_in[CH_ROLL] and radio_in[CH_PITCH] are equivalent aileron and elevator, not left and right elevon static uint16_t elevon1_trim = 1500; static uint16_t elevon2_trim = 1500; // These are used in the calculation of elevon1_trim and elevon2_trim static uint16_t ch1_temp = 1500; static uint16_t ch2_temp = 1500; // These are values received from the GCS if the user is using GCS joystick // control and are substituted for the values coming from the RC radio static int16_t rc_override[8] = {0,0,0,0,0,0,0,0}; // A flag if GCS joystick control is in use static bool rc_override_active = false; //////////////////////////////////////////////////////////////////////////////// // Failsafe //////////////////////////////////////////////////////////////////////////////// // A tracking variable for type of failsafe active // Used for failsafe based on loss of RC signal or GCS signal static int failsafe; // Used to track if the value on channel 3 (throtttle) has fallen below the failsafe threshold // RC receiver should be set up to output a low throttle value when signal is lost static bool ch3_failsafe; // A timer used to help recovery from unusual attitudes. If we enter an unusual attitude // while in autonomous flight this variable is used to hold roll at 0 for a recovery period static byte crash_timer; // A timer used to track how long since we have received the last GCS heartbeat or rc override message static uint32_t rc_override_fs_timer = 0; // A timer used to track how long we have been in a "short failsafe" condition due to loss of RC signal static uint32_t ch3_failsafe_timer = 0; //////////////////////////////////////////////////////////////////////////////// // LED output //////////////////////////////////////////////////////////////////////////////// // state of the GPS light (on/off) static bool GPS_light; //////////////////////////////////////////////////////////////////////////////// // GPS variables //////////////////////////////////////////////////////////////////////////////// // This is used to scale GPS values for EEPROM storage // 10^7 times Decimal GPS means 1 == 1cm // This approximation makes calculations integer and it's easy to read static const float t7 = 10000000.0; // We use atan2 and other trig techniques to calaculate angles // We need to scale the longitude up to make these calcs work // to account for decreasing distance between lines of longitude away from the equator static float scaleLongUp = 1; // Sometimes we need to remove the scaling for distance calcs static float scaleLongDown = 1; // A counter used to count down valid gps fixes to allow the gps estimate to settle // before recording our home position (and executing a ground start if we booted with an air start) static byte ground_start_count = 5; // Used to compute a speed estimate from the first valid gps fixes to decide if we are // on the ground or in the air. Used to decide if a ground start is appropriate if we // booted with an air start. static int ground_start_avg; // Tracks if GPS is enabled based on statup routine // If we do not detect GPS at startup, we stop trying and assume GPS is not connected static bool GPS_enabled = false; static int32_t gps_base_alt; //////////////////////////////////////////////////////////////////////////////// // Location & Navigation //////////////////////////////////////////////////////////////////////////////// // Constants const float radius_of_earth = 6378100; // meters const float gravity = 9.81; // meters/ sec^2 // This is the currently calculated direction to fly. // deg * 100 : 0 to 360 static long nav_bearing; // This is the direction to the next waypoint or loiter center // deg * 100 : 0 to 360 static long target_bearing; //This is the direction from the last waypoint to the next waypoint // deg * 100 : 0 to 360 static long crosstrack_bearing; // A gain scaler to account for ground speed/headwind/tailwind static float nav_gain_scaler = 1; // Direction held during phases of takeoff and landing // deg * 100 dir of plane, A value of -1 indicates the course has not been set/is not in use static long hold_course = -1; // deg * 100 dir of plane static bool rtl_complete = false; // There may be two active commands in Auto mode. // This indicates the active navigation command by index number static byte nav_command_index; // This indicates the active non-navigation command by index number static byte non_nav_command_index; // This is the command type (eg navigate to waypoint) of the active navigation command static byte nav_command_ID = NO_COMMAND; static byte non_nav_command_ID = NO_COMMAND; //////////////////////////////////////////////////////////////////////////////// // Airspeed //////////////////////////////////////////////////////////////////////////////// // The current airspeed estimate/measurement in centimeters per second static int airspeed; // The calculated airspeed to use in FBW-B. Also used in higher modes for insuring min ground speed is met. // Also used for flap deployment criteria. Centimeters per second.static long target_airspeed; static long target_airspeed; // The difference between current and desired airspeed. Used in the pitch controller. Centimeters per second. static float airspeed_error; static float groundspeed_error; // The calculated total energy error (kinetic (altitude) plus potential (airspeed)). // Used by the throttle controller static long energy_error; // kinetic portion of energy error (m^2/s^2) static long airspeed_energy_error; // An amount that the airspeed should be increased in auto modes based on the user positioning the // throttle stick in the top half of the range. Centimeters per second. static int airspeed_nudge; // Similar to airspeed_nudge, but used when no airspeed sensor. // 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel static int throttle_nudge = 0; // The distance as reported by Sonar in cm – Values are 20 to 700 generally. static int16_t sonar_dist; //////////////////////////////////////////////////////////////////////////////// // Ground speed //////////////////////////////////////////////////////////////////////////////// // The amount current ground speed is below min ground speed. Centimeters per second static long groundspeed_undershoot = 0; static long ground_speed = 0; static int throttle_last = 0, throttle = 500; //////////////////////////////////////////////////////////////////////////////// // Location Errors //////////////////////////////////////////////////////////////////////////////// // Difference between current bearing and desired bearing. Hundredths of a degree static long bearing_error; // Difference between current altitude and desired altitude. Centimeters static long altitude_error; // Distance perpandicular to the course line that we are off trackline. Meters static float crosstrack_error; //////////////////////////////////////////////////////////////////////////////// // CH7 control //////////////////////////////////////////////////////////////////////////////// // Used to track the CH7 toggle state. // When CH7 goes LOW PWM from HIGH PWM, this value will have been set true // This allows advanced functionality to know when to execute static boolean trim_flag; // This register tracks the current Mission Command index when writing // a mission using CH7 in flight static int8_t CH7_wp_index; float tuning_value; //////////////////////////////////////////////////////////////////////////////// // Battery Sensors //////////////////////////////////////////////////////////////////////////////// // Battery pack 1 voltage. Initialized above the low voltage threshold to pre-load the filter and prevent low voltage events at startup. static float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery pack 1 instantaneous currrent draw. Amperes static float current_amps1; // Totalized current (Amp-hours) from battery 1 static float current_total1; // To Do - Add support for second battery pack //static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery 2 Voltage, initialized above threshold for filter //static float current_amps2; // Current (Amperes) draw from battery 2 //static float current_total2; // Totalized current (Amp-hours) from battery 2 //////////////////////////////////////////////////////////////////////////////// // Airspeed Sensors //////////////////////////////////////////////////////////////////////////////// // Raw differential pressure measurement (filtered). ADC units static float airspeed_raw; // Raw differential pressure less the zero pressure offset. ADC units static float airspeed_pressure; // The pressure at home location - calibrated at arming static int32_t ground_pressure; // The ground temperature at home location - calibrated at arming static int16_t ground_temperature; //////////////////////////////////////////////////////////////////////////////// // Altitude Sensor variables //////////////////////////////////////////////////////////////////////////////// // Raw absolute pressure measurement (filtered). ADC units static unsigned long abs_pressure; // The altitude as reported by Baro in cm – Values can be quite high static int32_t baro_alt; //////////////////////////////////////////////////////////////////////////////// // flight mode specific //////////////////////////////////////////////////////////////////////////////// // Flag for using gps ground course instead of IMU yaw. Set false when takeoff command in process. static bool takeoff_complete = true; // Flag to indicate if we have landed. //Set land_complete if we are within 2 seconds distance or within 3 meters altitude of touchdown static bool land_complete; // Altitude threshold to complete a takeoff command in autonomous modes. Centimeters static long takeoff_altitude; // Pitch to hold during landing command in the no airspeed sensor case. Hundredths of a degree static int landing_pitch; // Minimum pitch to hold during takeoff command execution. Hundredths of a degree static int takeoff_pitch; static bool final = false; // JLN Update unsigned long timesw = 0; static long ground_course = 0; // deg * 100 dir of plane static bool speed_boost = false; //////////////////////////////////////////////////////////////////////////////// // Loiter management //////////////////////////////////////////////////////////////////////////////// // Previous target bearing. Used to calculate loiter rotations. Hundredths of a degree static long old_target_bearing; // Total desired rotation in a loiter. Used for Loiter Turns commands. Degrees static int loiter_total; // The amount in degrees we have turned since recording old_target_bearing static int loiter_delta; // Total rotation in a loiter. Used for Loiter Turns commands and to check for missed waypoints. Degrees static int loiter_sum; // The amount of time we have been in a Loiter. Used for the Loiter Time command. Milliseconds. static long loiter_time; // The amount of time we should stay in a loiter for the Loiter Time command. Milliseconds. static int loiter_time_max; //////////////////////////////////////////////////////////////////////////////// // Navigation control variables //////////////////////////////////////////////////////////////////////////////// // The instantaneous desired bank angle. Hundredths of a degree static long nav_roll; // The instantaneous desired pitch angle. Hundredths of a degree static long nav_pitch; // Calculated radius for the wp turn based on ground speed and max turn angle static long wp_radius; static long toff_yaw; // deg * 100 : yaw angle for takeoff static long altitude_estimate = 0; // for smoothing GPS output //////////////////////////////////////////////////////////////////////////////// // Waypoint distances //////////////////////////////////////////////////////////////////////////////// // Distance between plane and next waypoint. Meters static long wp_distance; // Distance between previous and next waypoint. Meters static long wp_totalDistance; static long max_dist_set; // used for HEADALT (LEO) //////////////////////////////////////////////////////////////////////////////// // repeating event control //////////////////////////////////////////////////////////////////////////////// // Flag indicating current event type static byte event_id; // when the event was started in ms static long event_timer; // how long to delay the next firing of event in millis static uint16_t event_delay; // how many times to cycle : -1 (or -2) = forever, 2 = do one cycle, 4 = do two cycles static int event_repeat = 0; // per command value, such as PWM for servos static int event_value; // the value used to cycle events (alternate value to event_value) static int event_undo_value; //////////////////////////////////////////////////////////////////////////////// // Conditional command //////////////////////////////////////////////////////////////////////////////// // A value used in condition commands (eg delay, change alt, etc.) // For example in a change altitude command, it is the altitude to change to. static long condition_value; // A starting value used to check the status of a conditional command. // For example in a delay command the condition_start records that start time for the delay static long condition_start; // A value used in condition commands. For example the rate at which to change altitude. static int condition_rate; //////////////////////////////////////////////////////////////////////////////// // 3D Location vectors // Location structure defined in AP_Common //////////////////////////////////////////////////////////////////////////////// // The home location used for RTL. The location is set when we first get stable GPS lock static struct Location home; // Flag for if we have g_gps lock and have set the home location static bool home_is_set; // The location of the previous waypoint. Used for track following and altitude ramp calculations static struct Location prev_WP; // The plane's current location static struct Location current_loc; // The location of the current/active waypoint. Used for altitude ramp, track following and loiter calculations. static struct Location next_WP; // The location of the active waypoint in Guided mode. static struct Location guided_WP; // The location structure information from the Nav command being processed static struct Location next_nav_command; // The location structure information from the Non-Nav command being processed static struct Location next_nonnav_command; //////////////////////////////////////////////////////////////////////////////// // Altitude / Climb rate control //////////////////////////////////////////////////////////////////////////////// // The current desired altitude. Altitude is linearly ramped between waypoints. Centimeters static long target_altitude; // Altitude difference between previous and current waypoint. Centimeters static long offset_altitude; //////////////////////////////////////////////////////////////////////////////// // IMU variables //////////////////////////////////////////////////////////////////////////////// // The main loop execution time. Seconds //This is the time between calls to the DCM algorithm and is the Integration time for the gyros. static float G_Dt = 0.02; //////////////////////////////////////////////////////////////////////////////// // Performance monitoring //////////////////////////////////////////////////////////////////////////////// // Timer used to accrue data and trigger recording of the performanc monitoring log message static long perf_mon_timer; // The maximum main loop execution time recorded in the current performance monitoring interval static int G_Dt_max = 0; // The number of gps fixes recorded in the current performance monitoring interval static int gps_fix_count = 0; // A variable used by developers to track performanc metrics. // Currently used to record the number of GCS heartbeat messages received static int pmTest1 = 0; //////////////////////////////////////////////////////////////////////////////// // System Timers //////////////////////////////////////////////////////////////////////////////// // Time in miliseconds of start of main control loop. Milliseconds static unsigned long fast_loopTimer; // Time Stamp when fast loop was complete. Milliseconds static unsigned long fast_loopTimeStamp; // Number of milliseconds used in last main loop cycle static uint8_t delta_ms_fast_loop; // Counter of main loop executions. Used for performance monitoring and failsafe processing static uint16_t mainLoop_count; // Time in miliseconds of start of medium control loop. Milliseconds static unsigned long medium_loopTimer; // Counters for branching from main control loop to slower loops static byte medium_loopCounter; // Number of milliseconds used in last medium loop cycle static uint8_t delta_ms_medium_loop; // Counters for branching from medium control loop to slower loops static byte slow_loopCounter; // Counter to trigger execution of very low rate processes static byte superslow_loopCounter; // Counter to trigger execution of 1 Hz processes static byte counter_one_herz; // used to track the elapsed time for navigation PID integral terms static unsigned long nav_loopTimer; // Elapsed time since last call to navigation pid functions static unsigned long dTnav; // % MCU cycles used static float load; //////////////////////////////////////////////////////////////////////////////// // Top-level logic //////////////////////////////////////////////////////////////////////////////// void setup() { memcheck_init(); init_ardupilot(); } void loop() { // We want this to execute at 50Hz if possible // ------------------------------------------- if (millis()-fast_loopTimer > 19) { delta_ms_fast_loop = millis() - fast_loopTimer; load = (float)(fast_loopTimeStamp - fast_loopTimer)/delta_ms_fast_loop; G_Dt = (float)delta_ms_fast_loop / 1000.f; fast_loopTimer = millis(); mainLoop_count++; // Execute the fast loop // --------------------- fast_loop(); // Execute the medium loop // ----------------------- medium_loop(); counter_one_herz++; if(counter_one_herz == 50){ one_second_loop(); counter_one_herz = 0; } if (millis() - perf_mon_timer > 20000) { if (mainLoop_count != 0) { #if LITE == DISABLED if (g.log_bitmask & MASK_LOG_PM) #if HIL_MODE != HIL_MODE_ATTITUDE Log_Write_Performance(); #endif #endif resetPerfData(); } } fast_loopTimeStamp = millis(); } } // Main loop 50Hz static void fast_loop() { // This is the fast loop - we want it to execute at 50Hz if possible // ----------------------------------------------------------------- if (delta_ms_fast_loop > G_Dt_max) G_Dt_max = delta_ms_fast_loop; // Read radio // ---------- read_radio(); // try to send any deferred messages if the serial port now has // some space available gcs_send_message(MSG_RETRY_DEFERRED); // check for loss of control signal failsafe condition // ------------------------------------ check_short_failsafe(); #if HIL_MODE == HIL_MODE_SENSORS // update hil before dcm update gcs_update(); #endif #if LITE == DISABLED ahrs.update(); #endif // Read Sonar // ---------- #if CONFIG_SONAR == ENABLED if(g.sonar_enabled){ sonar_dist = sonar.read(); } #endif // uses the yaw from the DCM to give more accurate turns calc_bearing_error(); #if LITE == DISABLED # if HIL_MODE == HIL_MODE_DISABLED if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) Log_Write_Attitude((int)ahrs.roll_sensor, (int)ahrs.pitch_sensor, (uint16_t)ahrs.yaw_sensor); if (g.log_bitmask & MASK_LOG_RAW) Log_Write_Raw(); #endif #endif // inertial navigation // ------------------ #if INERTIAL_NAVIGATION == ENABLED // TODO: implement inertial nav function inertialNavigation(); #endif // custom code/exceptions for flight modes // --------------------------------------- update_current_flight_mode(); // apply desired roll, pitch and yaw to the plane // ---------------------------------------------- if (control_mode > LEARNING) learning(); // write out the servo PWM values // ------------------------------ set_servos(); // XXX is it appropriate to be doing the comms below on the fast loop? gcs_update(); gcs_data_stream_send(); } static void medium_loop() { #if MOUNT == ENABLED camera_mount.update_mount_position(); #endif // This is the start of the medium (10 Hz) loop pieces // ----------------------------------------- switch(medium_loopCounter) { // This case deals with the GPS //------------------------------- case 0: medium_loopCounter++; if(GPS_enabled){ update_GPS(); calc_gndspeed_undershoot(); } //#if LITE == DISABLED #if HIL_MODE != HIL_MODE_ATTITUDE if (g.compass_enabled && compass.read()) { ahrs.set_compass(&compass); // Calculate heading #if LITE == DISABLED Matrix3f m = ahrs.get_dcm_matrix(); compass.calculate(m); #else compass.calculate(0,0); // roll = 0, pitch = 0 #endif compass.null_offsets(); } else { ahrs.set_compass(NULL); } #endif //#endif /*{ Serial.print(ahrs.roll_sensor, DEC); Serial.printf_P(PSTR("\t")); Serial.print(ahrs.pitch_sensor, DEC); Serial.printf_P(PSTR("\t")); Serial.print(ahrs.yaw_sensor, DEC); Serial.printf_P(PSTR("\t")); Vector3f tempaccel = imu.get_accel(); Serial.print(tempaccel.x, DEC); Serial.printf_P(PSTR("\t")); Serial.print(tempaccel.y, DEC); Serial.printf_P(PSTR("\t")); Serial.println(tempaccel.z, DEC); }*/ break; // This case performs some navigation computations //------------------------------------------------ case 1: medium_loopCounter++; if(g_gps->new_data){ g_gps->new_data = false; dTnav = millis() - nav_loopTimer; nav_loopTimer = millis(); // calculate the plane's desired bearing // ------------------------------------- navigate(); } break; // command processing //------------------------------ case 2: medium_loopCounter++; // perform next command // -------------------- update_commands(); break; // This case deals with sending high rate telemetry //------------------------------------------------- case 3: medium_loopCounter++; #if LITE == DISABLED #if HIL_MODE != HIL_MODE_ATTITUDE if ((g.log_bitmask & MASK_LOG_ATTITUDE_MED) && !(g.log_bitmask & MASK_LOG_ATTITUDE_FAST)) Log_Write_Attitude((int)ahrs.roll_sensor, (int)ahrs.pitch_sensor, (uint16_t)ahrs.yaw_sensor); if (g.log_bitmask & MASK_LOG_CTUN) Log_Write_Control_Tuning(); #endif if (g.log_bitmask & MASK_LOG_NTUN) Log_Write_Nav_Tuning(); if (g.log_bitmask & MASK_LOG_GPS) Log_Write_GPS(g_gps->time, current_loc.lat, current_loc.lng, g_gps->altitude, current_loc.alt, (long) g_gps->ground_speed, g_gps->ground_course, g_gps->fix, g_gps->num_sats); #endif break; // This case controls the slow loop //--------------------------------- case 4: medium_loopCounter = 0; delta_ms_medium_loop = millis() - medium_loopTimer; medium_loopTimer = millis(); if (g.battery_monitoring != 0){ read_battery(); } read_trim_switch(); slow_loop(); break; } } static void slow_loop() { // This is the slow (3 1/3 Hz) loop pieces //---------------------------------------- switch (slow_loopCounter){ case 0: slow_loopCounter++; check_long_failsafe(); superslow_loopCounter++; if(superslow_loopCounter >=200) { // 200 = Execute every minute #if LITE == DISABLED #if HIL_MODE != HIL_MODE_ATTITUDE if(g.compass_enabled) { compass.save_offsets(); } #endif #endif superslow_loopCounter = 0; } break; case 1: slow_loopCounter++; // Read 3-position switch on radio // ------------------------------- read_control_switch(); // Read Control Surfaces/Mix switches // ---------------------------------- update_servo_switches(); update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8); #if MOUNT == ENABLED camera_mount.update_mount_type(); #endif break; case 2: slow_loopCounter = 0; update_events(); mavlink_system.sysid = g.sysid_this_mav; // This is just an ugly hack to keep mavlink_system.sysid sync'd with our parameter #if USB_MUX_PIN > 0 check_usb_mux(); #endif #if TRACE == ENABLED // Serial.printf_P(PSTR("NAV->gnd_crs=%3.0f, nav_brg=%3.0f, tgt_brg=%3.0f, brg_err=%3.0f, nav_rll=%3.1f rsvo=%3.1f\n"), // (float)ground_course/100, (float)nav_bearing/100, (float)target_bearing/100, (float)bearing_error/100, (float)nav_roll/100, (float)g.channel_roll.servo_out/100); // Serial.printf_P(PSTR("WPL->g.command_total=%d, g.command_index=%d, nav_command_index=%d\n"), // g.command_total, g.command_index, nav_command_index); Serial.printf_P(PSTR("NAV->gnd_crs=%3.0f, sonar_dist = %d\n"), (float)ground_course/100, (int)sonar_dist); #endif break; } } static void one_second_loop() { #if LITE == DISABLED if (g.log_bitmask & MASK_LOG_CUR) Log_Write_Current(); #endif // send a heartbeat gcs_send_message(MSG_HEARTBEAT); } static void update_GPS(void) { static uint16_t hdg; g_gps->update(); update_GPS_light(); if (g_gps->new_data && g_gps->fix) { // for performance // --------------- gps_fix_count++; if(ground_start_count > 1){ ground_start_count--; ground_start_avg += g_gps->ground_speed; } else if (ground_start_count == 1) { // We countdown N number of good GPS fixes // so that the altitude is more accurate // ------------------------------------- if (current_loc.lat == 0) { ground_start_count = 5; } else { if(ENABLE_AIR_START == 1 && (ground_start_avg / 5) < SPEEDFILT){ startup_ground(); #if LITE == DISABLED if (g.log_bitmask & MASK_LOG_CMD) Log_Write_Startup(TYPE_GROUNDSTART_MSG); #endif init_home(); } else if (ENABLE_AIR_START == 0) { init_home(); } //#if LITE == DISABLED if (g.compass_enabled) { // Set compass declination automatically compass.set_initial_location(g_gps->latitude, g_gps->longitude); } //#endif ground_start_count = 0; } } current_loc.lng = g_gps->longitude; // Lon * 10**7 current_loc.lat = g_gps->latitude; // Lat * 10**7 current_loc.alt = max((g_gps->altitude - home.alt),0); ground_speed = g_gps->ground_speed; #if LITE == DISABLED if (g.compass_enabled) { hdg=(ahrs.yaw_sensor / 100) % 360; ground_course = hdg * 100; ground_course = ahrs.yaw_sensor; } else { #endif long magheading; magheading = ToDeg(compass.heading) * 100; if (magheading > 36000) magheading -= 36000; if (magheading < 0) magheading += 36000; ground_course = magheading; #if LITE == DISABLED } #endif // see if we've breached the geo-fence geofence_check(false); } } static void update_current_flight_mode(void) { int AOAstart; if(control_mode == AUTO){ switch(nav_command_ID){ case MAV_CMD_NAV_TAKEOFF: case MAV_CMD_NAV_LAND: break; default: hold_course = -1; calc_nav_roll(); calc_throttle(); break; } }else{ switch(control_mode){ case RTL: case LOITER: case GUIDED: hold_course = -1; calc_nav_roll(); calc_throttle(); break; case FLY_BY_WIRE_A: case FLY_BY_WIRE_B: break; case LEARNING: nav_roll = 0; nav_pitch = 0; #if X_PLANE == ENABLED // servo_out is for Sim control only // --------------------------------- g.channel_roll.servo_out = g.channel_roll.pwm_to_angle(); g.channel_pitch.servo_out = g.channel_pitch.pwm_to_angle(); g.channel_rudder.servo_out = g.channel_roll.pwm_to_angle(); #endif // throttle is passthrough break; case CIRCLE: // we have no GPS installed and have lost radio contact // or we just want to fly around in a gentle circle w/o GPS // ---------------------------------------------------- nav_roll = g.roll_limit / 3; nav_pitch = 0; if (failsafe != FAILSAFE_NONE){ g.channel_throttle.servo_out = g.throttle_cruise; } break; case MANUAL: // servo_out is for Sim control only // --------------------------------- g.channel_roll.servo_out = g.channel_roll.pwm_to_angle(); g.channel_pitch.servo_out = g.channel_pitch.pwm_to_angle(); g.channel_rudder.servo_out = g.channel_roll.pwm_to_angle(); break; } } } static void update_navigation() { // wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS // ------------------------------------------------------------------------ // distance and bearing calcs only if(control_mode == AUTO){ verify_commands(); }else{ switch(control_mode){ case LOITER: case RTL: // no loitering around the wp with the rover, goes direct to the wp position case GUIDED: // update_loiter(); calc_nav_roll(); calc_bearing_error(); if(verify_RTL()) { g.channel_throttle.servo_out = g.throttle_min.get(); set_mode(MANUAL); } break; } } }