/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* SITL.cpp - software in the loop state */ #include "SITL.h" #include #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #include #ifdef SFML_JOYSTICK #ifdef HAVE_SFML_GRAPHICS_HPP #include #elif HAVE_SFML_GRAPHIC_H #include #endif #endif // SFML_JOYSTICK extern const AP_HAL::HAL& hal; namespace SITL { SIM *SIM::_singleton = nullptr; // table of user settable parameters const AP_Param::GroupInfo SIM::var_info[] = { AP_GROUPINFO("DRIFT_SPEED", 5, SIM, drift_speed, 0.05f), AP_GROUPINFO("DRIFT_TIME", 6, SIM, drift_time, 5), AP_GROUPINFO("ENGINE_MUL", 8, SIM, engine_mul, 1), AP_GROUPINFO("WIND_SPD", 9, SIM, wind_speed, 0), AP_GROUPINFO("WIND_DIR", 10, SIM, wind_direction, 180), AP_GROUPINFO("WIND_TURB", 11, SIM, wind_turbulance, 0), AP_GROUPINFO("SERVO_SPEED", 16, SIM, servo_speed, 0.14), AP_GROUPINFO("BATT_VOLTAGE", 19, SIM, batt_voltage, 12.6f), AP_GROUPINFO("BATT_CAP_AH", 20, SIM, batt_capacity_ah, 0), AP_GROUPINFO("SONAR_GLITCH", 23, SIM, sonar_glitch, 0), AP_GROUPINFO("SONAR_RND", 24, SIM, sonar_noise, 0), AP_GROUPINFO("RC_FAIL", 25, SIM, rc_fail, 0), AP_GROUPINFO("FLOAT_EXCEPT", 28, SIM, float_exception, 1), AP_GROUPINFO("SONAR_SCALE", 32, SIM, sonar_scale, 12.1212f), AP_GROUPINFO("FLOW_ENABLE", 33, SIM, flow_enable, 0), AP_GROUPINFO("TERRAIN", 34, SIM, terrain_enable, 1), AP_GROUPINFO("FLOW_RATE", 35, SIM, flow_rate, 10), AP_GROUPINFO("FLOW_DELAY", 36, SIM, flow_delay, 0), AP_GROUPINFO("WIND_DELAY", 40, SIM, wind_delay, 0), AP_GROUPINFO("ADSB_COUNT", 45, SIM, adsb_plane_count, -1), AP_GROUPINFO("ADSB_RADIUS", 46, SIM, adsb_radius_m, 10000), AP_GROUPINFO("ADSB_ALT", 47, SIM, adsb_altitude_m, 1000), AP_GROUPINFO("PIN_MASK", 50, SIM, pin_mask, 0), AP_GROUPINFO("ADSB_TX", 51, SIM, adsb_tx, 0), AP_GROUPINFO("SPEEDUP", 52, SIM, speedup, -1), AP_GROUPINFO("IMU_POS", 53, SIM, imu_pos_offset, 0), AP_SUBGROUPEXTENSION("", 54, SIM, var_ins), AP_GROUPINFO("SONAR_POS", 55, SIM, rngfnd_pos_offset, 0), AP_GROUPINFO("FLOW_POS", 56, SIM, optflow_pos_offset, 0), AP_GROUPINFO("ENGINE_FAIL", 58, SIM, engine_fail, 0), AP_SUBGROUPINFO(shipsim, "SHIP_", 59, SIM, ShipSim), AP_SUBGROUPEXTENSION("", 60, SIM, var_mag), AP_SUBGROUPEXTENSION("", 61, SIM, var_gps), AP_SUBGROUPEXTENSION("", 62, SIM, var_info3), AP_SUBGROUPEXTENSION("", 63, SIM, var_info2), AP_GROUPEND }; // second table of user settable parameters for SITL. const AP_Param::GroupInfo SIM::var_info2[] = { AP_GROUPINFO("TEMP_START", 1, SIM, temp_start, 25), AP_GROUPINFO("TEMP_BRD_OFF", 2, SIM, temp_board_offset, 20), AP_GROUPINFO("TEMP_TCONST", 3, SIM, temp_tconst, 30), AP_GROUPINFO("TEMP_BFACTOR", 4, SIM, temp_baro_factor, 0), AP_GROUPINFO("WIND_DIR_Z", 10, SIM, wind_dir_z, 0), AP_GROUPINFO("WIND_T" ,15, SIM, wind_type, SIM::WIND_TYPE_SQRT), AP_GROUPINFO("WIND_T_ALT" ,16, SIM, wind_type_alt, 60), AP_GROUPINFO("WIND_T_COEF", 17, SIM, wind_type_coef, 0.01f), AP_GROUPINFO("RC_CHANCOUNT",21, SIM, rc_chancount, 16), // @Group: SPR_ // @Path: ./SIM_Sprayer.cpp AP_SUBGROUPINFO(sprayer_sim, "SPR_", 22, SIM, Sprayer), // @Group: GRPS_ // @Path: ./SIM_Gripper_Servo.cpp AP_SUBGROUPINFO(gripper_sim, "GRPS_", 23, SIM, Gripper_Servo), // @Group: GRPE_ // @Path: ./SIM_Gripper_EPM.cpp AP_SUBGROUPINFO(gripper_epm_sim, "GRPE_", 24, SIM, Gripper_EPM), // weight on wheels pin AP_GROUPINFO("WOW_PIN", 25, SIM, wow_pin, -1), // vibration frequencies on each axis AP_GROUPINFO("VIB_FREQ", 26, SIM, vibe_freq, 0), // @Path: ./SIM_Parachute.cpp AP_SUBGROUPINFO(parachute_sim, "PARA_", 27, SIM, Parachute), // enable bandwidth limitting on telemetry ports: AP_GROUPINFO("BAUDLIMIT_EN", 28, SIM, telem_baudlimit_enable, 0), // @Group: PLD_ // @Path: ./SIM_Precland.cpp AP_SUBGROUPINFO(precland_sim, "PLD_", 29, SIM, SIM_Precland), // apply a force to the vehicle over a period of time: AP_GROUPINFO("SHOVE_X", 30, SIM, shove.x, 0), AP_GROUPINFO("SHOVE_Y", 31, SIM, shove.y, 0), AP_GROUPINFO("SHOVE_Z", 32, SIM, shove.z, 0), AP_GROUPINFO("SHOVE_TIME", 33, SIM, shove.t, 0), // optical flow sensor measurement noise in rad/sec AP_GROUPINFO("FLOW_RND", 34, SIM, flow_noise, 0.05f), AP_GROUPINFO("TWIST_X", 37, SIM, twist.x, 0), AP_GROUPINFO("TWIST_Y", 38, SIM, twist.y, 0), AP_GROUPINFO("TWIST_Z", 39, SIM, twist.z, 0), AP_GROUPINFO("TWIST_TIME", 40, SIM, twist.t, 0), AP_GROUPINFO("GND_BEHAV", 41, SIM, gnd_behav, -1), // sailboat wave and tide simulation parameters AP_GROUPINFO("WAVE_ENABLE", 44, SIM, wave.enable, 0.0f), AP_GROUPINFO("WAVE_LENGTH", 45, SIM, wave.length, 10.0f), AP_GROUPINFO("WAVE_AMP", 46, SIM, wave.amp, 0.5f), AP_GROUPINFO("WAVE_DIR", 47, SIM, wave.direction, 0.0f), AP_GROUPINFO("WAVE_SPEED", 48, SIM, wave.speed, 0.5f), AP_GROUPINFO("TIDE_DIR", 49, SIM, tide.direction, 0.0f), AP_GROUPINFO("TIDE_SPEED", 50, SIM, tide.speed, 0.0f), // the following coordinates are for CMAC, in Canberra AP_GROUPINFO("OPOS_LAT", 51, SIM, opos.lat, -35.363261f), AP_GROUPINFO("OPOS_LNG", 52, SIM, opos.lng, 149.165230f), AP_GROUPINFO("OPOS_ALT", 53, SIM, opos.alt, 584.0f), AP_GROUPINFO("OPOS_HDG", 54, SIM, opos.hdg, 353.0f), // extra delay per main loop AP_GROUPINFO("LOOP_DELAY", 55, SIM, loop_delay, 0), // @Path: ./SIM_Buzzer.cpp AP_SUBGROUPINFO(buzzer_sim, "BZ_", 56, SIM, Buzzer), // @Path: ./SIM_ToneAlarm.cpp AP_SUBGROUPINFO(tonealarm_sim, "TA_", 57, SIM, ToneAlarm), AP_GROUPINFO("EFI_TYPE", 58, SIM, efi_type, SIM::EFI_TYPE_NONE), AP_GROUPINFO("SAFETY_STATE", 59, SIM, _safety_switch_state, 0), // max motor vibration frequency AP_GROUPINFO("VIB_MOT_MAX", 61, SIM, vibe_motor, 0.0f), // minimum throttle for simulated ins noise AP_GROUPINFO("INS_THR_MIN", 62, SIM, ins_noise_throttle_min, 0.1f), // amplitude scaling of motor noise relative to gyro/accel noise AP_GROUPINFO("VIB_MOT_MULT", 63, SIM, vibe_motor_scale, 1.0f), AP_GROUPEND }; // third table of user settable parameters for SITL. const AP_Param::GroupInfo SIM::var_info3[] = { AP_GROUPINFO("ODOM_ENABLE", 1, SIM, odom_enable, 0), AP_GROUPINFO("LED_LAYOUT", 11, SIM, led_layout, 0), // Scenario for thermalling simulation, for soaring AP_GROUPINFO("THML_SCENARI", 12, SIM, thermal_scenario, 0), // vicon sensor position (position offsets in body frame) AP_GROUPINFO("VICON_POS", 14, SIM, vicon_pos_offset, 0), // Buyoancy for submarines AP_GROUPINFO_FRAME("BUOYANCY", 15, SIM, buoyancy, 1, AP_PARAM_FRAME_SUB), // vicon glitch in NED frame AP_GROUPINFO("VICON_GLIT", 16, SIM, vicon_glitch, 0), // vicon failure AP_GROUPINFO("VICON_FAIL", 17, SIM, vicon_fail, 0), // vicon yaw (in earth frame) AP_GROUPINFO("VICON_YAW", 18, SIM, vicon_yaw, 0), // vicon yaw error in degrees (added to reported yaw sent to vehicle) AP_GROUPINFO("VICON_YAWERR", 19, SIM, vicon_yaw_error, 0), // vicon message type mask AP_GROUPINFO("VICON_TMASK", 20, SIM, vicon_type_mask, 3), // vicon velocity glitch in NED frame AP_GROUPINFO("VICON_VGLI", 21, SIM, vicon_vel_glitch, 0), AP_GROUPINFO("RATE_HZ", 22, SIM, loop_rate_hz, 1200), // count of simulated IMUs AP_GROUPINFO("IMU_COUNT", 23, SIM, imu_count, 2), // @Path: ./SIM_FETtecOneWireESC.cpp AP_SUBGROUPINFO(fetteconewireesc_sim, "FTOWESC_", 30, SIM, FETtecOneWireESC), // @Path: ./SIM_RichenPower.cpp AP_SUBGROUPINFO(richenpower_sim, "RICH_", 31, SIM, RichenPower), // @Path: ./SIM_IntelligentEnergy24.cpp AP_SUBGROUPINFO(ie24_sim, "IE24_", 32, SIM, IntelligentEnergy24), // user settable barometer parameters AP_GROUPINFO("BARO_COUNT", 33, SIM, baro_count, 2), AP_SUBGROUPINFO(baro[0], "BARO_", 34, SIM, SIM::BaroParm), #if BARO_MAX_INSTANCES > 1 AP_SUBGROUPINFO(baro[1], "BAR2_", 35, SIM, SIM::BaroParm), #endif #if BARO_MAX_INSTANCES > 2 AP_SUBGROUPINFO(baro[2], "BAR3_", 36, SIM, SIM::BaroParm), #endif // user settable parameters for the 1st barometer // @Param: BARO_RND // @DisplayName: Baro Noise // @Description: Amount of (evenly-distributed) noise injected into the 1st baro // @Units: m // @User: Advanced // @Param: BARO_GLITCH // @DisplayName: Baro Glitch // @Description: Glitch for 1st baro // @Units: m // @User: Advanced // user settable parameters for the 2nd barometer // @Param: BAR2_RND // @DisplayName: Baro2 Noise // @Description: Amount of (evenly-distributed) noise injected into the 2nd baro // @Units: m // @User: Advanced // @Param: BAR2_GLITCH // @DisplayName: Baro2 Glitch // @Description: Glitch for 2nd baro // @Units: m // @User: Advanced // user settable parameters for the 3rd barometer // @Param: BAR3_RND // @DisplayName: Baro3 Noise // @Description: Amount of (evenly-distributed) noise injected into the 3rd baro // @Units: m // @User: Advanced // @Param: BAR3_GLITCH // @DisplayName: Baro3 Glitch // @Description: Glitch for 2nd baro // @Units: m // @User: Advanced AP_GROUPINFO("ESC_TELEM", 40, SIM, esc_telem, 1), // user settable parameters for the 1st airspeed sensor AP_GROUPINFO("ARSPD_RND", 50, SIM, arspd_noise[0], 2.0), AP_GROUPINFO("ARSPD_OFS", 51, SIM, arspd_offset[0], 2013), AP_GROUPINFO("ARSPD_FAIL", 52, SIM, arspd_fail[0], 0), AP_GROUPINFO("ARSPD_FAILP", 53, SIM, arspd_fail_pressure[0], 0), AP_GROUPINFO("ARSPD_PITOT", 54, SIM, arspd_fail_pitot_pressure[0], 0), // user settable parameters for the 2nd airspeed sensor AP_GROUPINFO("ARSPD2_RND", 56, SIM, arspd_noise[1], 2.0), AP_GROUPINFO("ARSPD2_OFS", 57, SIM, arspd_offset[1], 2013), AP_GROUPINFO("ARSPD2_FAIL", 58, SIM, arspd_fail[1], 0), AP_GROUPINFO("ARSPD2_FAILP", 59, SIM, arspd_fail_pressure[1], 0), AP_GROUPINFO("ARSPD2_PITOT", 60, SIM, arspd_fail_pitot_pressure[1], 0), // user settable common airspeed parameters AP_GROUPINFO("ARSPD_SIGN", 62, SIM, arspd_signflip, 0), #ifdef SFML_JOYSTICK AP_SUBGROUPEXTENSION("", 63, SIM, var_sfml_joystick), #endif // SFML_JOYSTICK AP_GROUPEND }; // user settable parameters for the barometers const AP_Param::GroupInfo SIM::BaroParm::var_info[] = { AP_GROUPINFO("RND", 1, SIM::BaroParm, noise, 0.2f), AP_GROUPINFO("DRIFT", 2, SIM::BaroParm, drift, 0), AP_GROUPINFO("DISABLE", 3, SIM::BaroParm, disable, 0), AP_GROUPINFO("GLITCH", 4, SIM::BaroParm, glitch, 0), AP_GROUPINFO("FREEZE", 5, SIM::BaroParm, freeze, 0), AP_GROUPINFO("DELAY", 6, SIM::BaroParm, delay, 0), // wind coeffients AP_GROUPINFO("WCF_FWD", 7, SIM::BaroParm, wcof_xp, 0.0), AP_GROUPINFO("WCF_BAK", 8, SIM::BaroParm, wcof_xn, 0.0), AP_GROUPINFO("WCF_RGT", 9, SIM::BaroParm, wcof_yp, 0.0), AP_GROUPINFO("WCF_LFT", 10, SIM::BaroParm, wcof_yn, 0.0), AP_GROUPEND }; // GPS SITL parameters const AP_Param::GroupInfo SIM::var_gps[] = { AP_GROUPINFO("GPS_DISABLE", 1, SIM, gps_disable[0], 0), AP_GROUPINFO("GPS_DELAY", 2, SIM, gps_delay[0], 1), AP_GROUPINFO("GPS_TYPE", 3, SIM, gps_type[0], SIM::GPS_TYPE_UBLOX), AP_GROUPINFO("GPS_BYTELOSS", 4, SIM, gps_byteloss[0], 0), AP_GROUPINFO("GPS_NUMSATS", 5, SIM, gps_numsats[0], 10), AP_GROUPINFO("GPS_GLITCH", 6, SIM, gps_glitch[0], 0), AP_GROUPINFO("GPS_HZ", 7, SIM, gps_hertz[0], 5), AP_GROUPINFO("GPS_DRIFTALT", 8, SIM, gps_drift_alt[0], 0), AP_GROUPINFO("GPS_POS", 9, SIM, gps_pos_offset[0], 0), AP_GROUPINFO("GPS_NOISE", 10, SIM, gps_noise[0], 0), AP_GROUPINFO("GPS_LOCKTIME", 11, SIM, gps_lock_time[0], 0), AP_GROUPINFO("GPS_ALT_OFS", 12, SIM, gps_alt_offset[0], 0), AP_GROUPINFO("GPS_HDG", 13, SIM, gps_hdg_enabled[0], SIM::GPS_HEADING_NONE), AP_GROUPINFO("GPS_ACC", 14, SIM, gps_accuracy[0], 0.3), AP_GROUPINFO("GPS_VERR", 15, SIM, gps_vel_err[0], 0), AP_GROUPINFO("GPS2_DISABLE", 30, SIM, gps_disable[1], 1), AP_GROUPINFO("GPS2_DELAY", 31, SIM, gps_delay[1], 1), AP_GROUPINFO("GPS2_TYPE", 32, SIM, gps_type[1], SIM::GPS_TYPE_UBLOX), AP_GROUPINFO("GPS2_BYTELOS", 33, SIM, gps_byteloss[1], 0), AP_GROUPINFO("GPS2_NUMSATS", 34, SIM, gps_numsats[1], 10), AP_GROUPINFO("GPS2_GLTCH", 35, SIM, gps_glitch[1], 0), AP_GROUPINFO("GPS2_HZ", 36, SIM, gps_hertz[1], 5), AP_GROUPINFO("GPS2_DRFTALT", 37, SIM, gps_drift_alt[1], 0), AP_GROUPINFO("GPS2_POS", 38, SIM, gps_pos_offset[1], 0), AP_GROUPINFO("GPS2_NOISE", 39, SIM, gps_noise[1], 0), AP_GROUPINFO("GPS2_LCKTIME", 40, SIM, gps_lock_time[1], 0), AP_GROUPINFO("GPS2_ALT_OFS", 41, SIM, gps_alt_offset[1], 0), AP_GROUPINFO("GPS2_HDG", 42, SIM, gps_hdg_enabled[1], SIM::GPS_HEADING_NONE), AP_GROUPINFO("GPS2_ACC", 43, SIM, gps_accuracy[1], 0.3), AP_GROUPINFO("GPS2_VERR", 44, SIM, gps_vel_err[1], 0), AP_GROUPINFO("INIT_LAT_OFS", 45, SIM, gps_init_lat_ofs, 0), AP_GROUPINFO("INIT_LON_OFS", 46, SIM, gps_init_lon_ofs, 0), AP_GROUPINFO("INIT_ALT_OFS", 47, SIM, gps_init_alt_ofs, 0), AP_GROUPEND }; // Mag SITL parameters const AP_Param::GroupInfo SIM::var_mag[] = { AP_GROUPINFO("MAG_RND", 1, SIM, mag_noise, 0), AP_GROUPINFO("MAG_MOT", 2, SIM, mag_mot, 0), AP_GROUPINFO("MAG_DELAY", 3, SIM, mag_delay, 0), AP_GROUPINFO("MAG_OFS", 4, SIM, mag_ofs[0], 0), AP_GROUPINFO("MAG_ALY", 5, SIM, mag_anomaly_ned, 0), AP_GROUPINFO("MAG_ALY_HGT", 6, SIM, mag_anomaly_hgt, 1.0f), AP_GROUPINFO("MAG_DIA", 7, SIM, mag_diag[0], 0), AP_GROUPINFO("MAG_ODI", 8, SIM, mag_offdiag[0], 0), AP_GROUPINFO("MAG_ORIENT", 9, SIM, mag_orient[0], 0), AP_GROUPINFO("MAG1_SCALING", 10, SIM, mag_scaling[0], 1), AP_GROUPINFO("MAG1_DEVID", 11, SIM, mag_devid[0], 97539), AP_GROUPINFO("MAG2_DEVID", 12, SIM, mag_devid[1], 131874), AP_GROUPINFO("MAG3_DEVID", 13, SIM, mag_devid[2], 263178), AP_GROUPINFO("MAG4_DEVID", 14, SIM, mag_devid[3], 97283), AP_GROUPINFO("MAG5_DEVID", 15, SIM, mag_devid[4], 97795), AP_GROUPINFO("MAG6_DEVID", 16, SIM, mag_devid[5], 98051), AP_GROUPINFO("MAG7_DEVID", 17, SIM, mag_devid[6], 0), AP_GROUPINFO("MAG8_DEVID", 18, SIM, mag_devid[7], 0), AP_GROUPINFO("MAG1_FAIL", 26, SIM, mag_fail[0], 0), #if HAL_COMPASS_MAX_SENSORS > 1 AP_GROUPINFO("MAG2_OFS", 19, SIM, mag_ofs[1], 0), AP_GROUPINFO("MAG2_DIA", 20, SIM, mag_diag[1], 0), AP_GROUPINFO("MAG2_ODI", 21, SIM, mag_offdiag[1], 0), AP_GROUPINFO("MAG2_ORIENT", 22, SIM, mag_orient[1], 0), AP_GROUPINFO("MAG2_FAIL", 27, SIM, mag_fail[1], 0), AP_GROUPINFO("MAG2_SCALING", 28, SIM, mag_scaling[1], 1), #endif #if HAL_COMPASS_MAX_SENSORS > 2 AP_GROUPINFO("MAG3_OFS", 23, SIM, mag_ofs[2], 0), AP_GROUPINFO("MAG3_DIA", 24, SIM, mag_diag[2], 0), AP_GROUPINFO("MAG3_ODI", 25, SIM, mag_offdiag[2], 0), AP_GROUPINFO("MAG3_FAIL", 29, SIM, mag_fail[2], 0), AP_GROUPINFO("MAG3_SCALING", 30, SIM, mag_scaling[2], 1), AP_GROUPINFO("MAG3_ORIENT", 36, SIM, mag_orient[2], 0), #endif AP_GROUPEND }; #ifdef SFML_JOYSTICK const AP_Param::GroupInfo SIM::var_sfml_joystick[] = { AP_GROUPINFO("SF_JS_STICK", 1, SIM, sfml_joystick_id, 0), AP_GROUPINFO("SF_JS_AXIS1", 2, SIM, sfml_joystick_axis[0], sf::Joystick::Axis::X), AP_GROUPINFO("SF_JS_AXIS2", 3, SIM, sfml_joystick_axis[1], sf::Joystick::Axis::Y), AP_GROUPINFO("SF_JS_AXIS3", 4, SIM, sfml_joystick_axis[2], sf::Joystick::Axis::Z), AP_GROUPINFO("SF_JS_AXIS4", 5, SIM, sfml_joystick_axis[3], sf::Joystick::Axis::U), AP_GROUPINFO("SF_JS_AXIS5", 6, SIM, sfml_joystick_axis[4], sf::Joystick::Axis::V), AP_GROUPINFO("SF_JS_AXIS6", 7, SIM, sfml_joystick_axis[5], sf::Joystick::Axis::R), AP_GROUPINFO("SF_JS_AXIS7", 8, SIM, sfml_joystick_axis[6], sf::Joystick::Axis::PovX), AP_GROUPINFO("SF_JS_AXIS8", 9, SIM, sfml_joystick_axis[7], sf::Joystick::Axis::PovY), AP_GROUPEND }; #endif //SFML_JOYSTICK // INS SITL parameters const AP_Param::GroupInfo SIM::var_ins[] = { AP_GROUPINFO("IMUT_START", 1, SIM, imu_temp_start, 25), AP_GROUPINFO("IMUT_END", 2, SIM, imu_temp_end, 45), AP_GROUPINFO("IMUT_TCONST", 3, SIM, imu_temp_tconst, 300), AP_GROUPINFO("IMUT_FIXED", 4, SIM, imu_temp_fixed, 0), AP_GROUPINFO("ACC1_BIAS", 5, SIM, accel_bias[0], 0), AP_GROUPINFO("ACC2_BIAS", 6, SIM, accel_bias[1], 0), AP_GROUPINFO("ACC3_BIAS", 7, SIM, accel_bias[2], 0), AP_GROUPINFO("GYR1_RND", 8, SIM, gyro_noise[0], 0), AP_GROUPINFO("GYR2_RND", 9, SIM, gyro_noise[1], 0), AP_GROUPINFO("GYR3_RND", 10, SIM, gyro_noise[2], 0), AP_GROUPINFO("ACC1_RND", 11, SIM, accel_noise[0], 0), AP_GROUPINFO("ACC2_RND", 12, SIM, accel_noise[1], 0), AP_GROUPINFO("ACC3_RND", 13, SIM, accel_noise[2], 0), AP_GROUPINFO("GYR1_SCALE", 14, SIM, gyro_scale[0], 0), AP_GROUPINFO("GYR2_SCALE", 15, SIM, gyro_scale[1], 0), AP_GROUPINFO("GYR3_SCALE", 16, SIM, gyro_scale[2], 0), AP_GROUPINFO("ACCEL1_FAIL", 17, SIM, accel_fail[0], 0), AP_GROUPINFO("ACCEL2_FAIL", 18, SIM, accel_fail[1], 0), AP_GROUPINFO("ACCEL3_FAIL", 19, SIM, accel_fail[2], 0), AP_GROUPINFO("GYR_FAIL_MSK", 20, SIM, gyro_fail_mask, 0), AP_GROUPINFO("ACC_FAIL_MSK", 21, SIM, accel_fail_mask, 0), AP_GROUPINFO("ACC1_SCAL", 22, SIM, accel_scale[0], 0), AP_GROUPINFO("ACC2_SCAL", 23, SIM, accel_scale[1], 0), AP_GROUPINFO("ACC3_SCAL", 24, SIM, accel_scale[2], 0), AP_GROUPINFO("ACC_TRIM", 25, SIM, accel_trim, 0), // @Param: SAIL_TYPE // @DisplayName: Sailboat simulation sail type // @Description: 0: mainsail with sheet, 1: directly actuated wing AP_GROUPINFO("SAIL_TYPE", 26, SIM, sail_type, 0), // @Param: JSON_MASTER // @DisplayName: JSON master instance // @Description: the instance number to take servos from AP_GROUPINFO("JSON_MASTER", 27, SIM, ride_along_master, 0), // the IMUT parameters must be last due to the enable parameters AP_SUBGROUPINFO(imu_tcal[0], "IMUT1_", 61, SIM, AP_InertialSensor::TCal), AP_SUBGROUPINFO(imu_tcal[1], "IMUT2_", 62, SIM, AP_InertialSensor::TCal), AP_SUBGROUPINFO(imu_tcal[2], "IMUT3_", 63, SIM, AP_InertialSensor::TCal), AP_GROUPEND }; /* report SITL state via MAVLink SIMSTATE*/ void SIM::simstate_send(mavlink_channel_t chan) const { float yaw; // convert to same conventions as DCM yaw = state.yawDeg; if (yaw > 180) { yaw -= 360; } mavlink_msg_simstate_send(chan, ToRad(state.rollDeg), ToRad(state.pitchDeg), ToRad(yaw), state.xAccel, state.yAccel, state.zAccel, radians(state.rollRate), radians(state.pitchRate), radians(state.yawRate), state.latitude*1.0e7, state.longitude*1.0e7); } /* report SITL state via MAVLink SIM_STATE */ void SIM::sim_state_send(mavlink_channel_t chan) const { // convert to same conventions as DCM float yaw = state.yawDeg; if (yaw > 180) { yaw -= 360; } mavlink_msg_sim_state_send(chan, state.quaternion.q1, state.quaternion.q2, state.quaternion.q3, state.quaternion.q4, ToRad(state.rollDeg), ToRad(state.pitchDeg), ToRad(yaw), state.xAccel, state.yAccel, state.zAccel, radians(state.rollRate), radians(state.pitchRate), radians(state.yawRate), state.latitude*1.0e7, state.longitude*1.0e7, (float)state.altitude, 0.0, 0.0, state.speedN, state.speedE, state.speedD); } /* report SITL state to AP_Logger */ void SIM::Log_Write_SIMSTATE() { float yaw; // convert to same conventions as DCM yaw = state.yawDeg; if (yaw > 180) { yaw -= 360; } struct log_AHRS pkt = { LOG_PACKET_HEADER_INIT(LOG_SIMSTATE_MSG), time_us : AP_HAL::micros64(), roll : (int16_t)(state.rollDeg*100), pitch : (int16_t)(state.pitchDeg*100), yaw : (uint16_t)(wrap_360_cd(yaw*100)), alt : (float)state.altitude, lat : (int32_t)(state.latitude*1.0e7), lng : (int32_t)(state.longitude*1.0e7), q1 : state.quaternion.q1, q2 : state.quaternion.q2, q3 : state.quaternion.q3, q4 : state.quaternion.q4, }; AP::logger().WriteBlock(&pkt, sizeof(pkt)); } /* convert a set of roll rates from earth frame to body frame output values are in radians/second */ void SIM::convert_body_frame(double rollDeg, double pitchDeg, double rollRate, double pitchRate, double yawRate, double *p, double *q, double *r) { double phi, theta, phiDot, thetaDot, psiDot; phi = ToRad(rollDeg); theta = ToRad(pitchDeg); phiDot = ToRad(rollRate); thetaDot = ToRad(pitchRate); psiDot = ToRad(yawRate); *p = phiDot - psiDot*sin(theta); *q = cos(phi)*thetaDot + sin(phi)*psiDot*cos(theta); *r = cos(phi)*psiDot*cos(theta) - sin(phi)*thetaDot; } /* convert angular velocities from body frame to earth frame. all inputs and outputs are in radians/s */ Vector3f SIM::convert_earth_frame(const Matrix3f &dcm, const Vector3f &gyro) { float p = gyro.x; float q = gyro.y; float r = gyro.z; float phi, theta, psi; dcm.to_euler(&phi, &theta, &psi); float phiDot = p + tanf(theta)*(q*sinf(phi) + r*cosf(phi)); float thetaDot = q*cosf(phi) - r*sinf(phi); if (fabsf(cosf(theta)) < 1.0e-20f) { theta += 1.0e-10f; } float psiDot = (q*sinf(phi) + r*cosf(phi))/cosf(theta); return Vector3f(phiDot, thetaDot, psiDot); } // get the rangefinder reading for the desired rotation, returns -1 for no data float SIM::get_rangefinder(uint8_t instance) { if (instance < RANGEFINDER_MAX_INSTANCES) { return state.rangefinder_m[instance]; } return -1; }; } // namespace SITL namespace AP { SITL::SIM *sitl() { return SITL::SIM::get_singleton(); } }; #endif // CONFIG_HAL_BOARD