// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- /* ArduCopterMega Version 0.1 Experimental Authors: Jason Short Based on code and ideas from the Arducopter team: Jose Julio, Randy Mackay, Jani Hirvinen Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier This firmware is free software; you can redistribute it and / or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. */ // AVR runtime #include #include #include #include // Libraries #include #include #include #include // ArduPilot Mega RC Library #include // ArduPilot Mega RC Library #include // ArduPilot Mega Analog to Digital Converter Library #include // ArduPilot GPS library #include // Arduino I2C lib #include // ArduPilot Mega BMP085 Library #include // ArduPilot Mega Flash Memory Library #include // ArduPilot Mega Magnetometer Library #include // ArduPilot Mega Vector/Matrix math Library #include // ArduPilot Mega IMU Library #include // ArduPilot Mega DCM Library #include // ArduPilot Mega RC Library // Configuration #include "config.h" // Local modules #include "defines.h" // Serial ports // // Note that FastSerial port buffers are allocated at ::begin time, // so there is not much of a penalty to defining ports that we don't // use. FastSerialPort0(Serial); // FTDI/console FastSerialPort1(Serial1); // GPS port (except for GPS_PROTOCOL_IMU) FastSerialPort3(Serial3); // Telemetry port (optional, Standard and ArduPilot protocols only) // standard sensors for live flight AP_ADC_ADS7844 adc; APM_BMP085_Class APM_BMP085; AP_Compass_HMC5843 compass; // GPS selection #if GPS_PROTOCOL == GPS_PROTOCOL_NMEA AP_GPS_NMEA GPS(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF AP_GPS_SIRF GPS(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX AP_GPS_UBLOX GPS(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_IMU AP_GPS_IMU GPS(&Serial); // note, console port #elif GPS_PROTOCOL == GPS_PROTOCOL_MTK AP_GPS_MTK GPS(&Serial1); #elif GPS_PROTOCOL == GPS_PROTOCOL_NONE AP_GPS_NONE GPS(NULL); #else # error Must define GPS_PROTOCOL in your configuration file. #endif AP_IMU imu(&adc, EE_IMU_OFFSET); AP_DCM dcm(&imu, &GPS); // GENERAL VARIABLE DECLARATIONS // -------------------------------------------- byte control_mode = STABILIZE; boolean failsafe = false; // did our throttle dip below the failsafe value? boolean ch3_failsafe = false; byte oldSwitchPosition; // for remembering the control mode switch byte fbw_timer; // for limiting the execution of FBW input const char *comma = ","; byte flight_modes[6]; const char* flight_mode_strings[] = { "ACRO", "STABILIZE", "ALT_HOLD", "FBW", "AUTO", "POSITION_HOLD", "RTL", "TAKEOFF", "LAND"}; /* Radio values Channel assignments 1 Ailerons (rudder if no ailerons) 2 Elevator 3 Throttle 4 Rudder (if we have ailerons) 5 Mode - 3 position switch 6 Altitude for Hold, user assignable 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second) 8 TBD */ // Radio // ----- RC_Channel rc_1(EE_RADIO_1); RC_Channel rc_2(EE_RADIO_2); RC_Channel rc_3(EE_RADIO_3); RC_Channel rc_4(EE_RADIO_4); RC_Channel rc_5(EE_RADIO_5); RC_Channel rc_6(EE_RADIO_6); RC_Channel rc_7(EE_RADIO_7); RC_Channel rc_8(EE_RADIO_8); int motor_out[4]; byte flight_mode_channel; byte frame_type = PLUS_FRAME; // PIDs and gains // --------------- //Acro PID pid_acro_rate_roll (EE_GAIN_1); PID pid_acro_rate_pitch (EE_GAIN_2); PID pid_acro_rate_yaw (EE_GAIN_3); float acro_rate_roll_pitch, acro_rate_yaw; //Stabilize PID pid_stabilize_roll (EE_GAIN_4); PID pid_stabilize_pitch (EE_GAIN_5); PID pid_yaw (EE_GAIN_6); float stabilize_rate_roll_pitch; float stabilize_rate_yaw; float stabilze_dampener; int max_stabilize_dampener; float stabilze_yaw_dampener; int max_yaw_dampener; // Nav PID pid_nav (EE_GAIN_7); PID pid_throttle (EE_GAIN_8); // GPS variables // ------------- byte ground_start_count = 5; // have we achieved first lock and set Home? const float t7 = 10000000.0; // used to scale GPS values for EEPROM storage float scaleLongUp; // used to reverse longtitude scaling float scaleLongDown; // used to reverse longtitude scaling boolean GPS_light = false; // status of the GPS light // Location & Navigation // --------------------- byte wp_radius = 3; // meters long nav_bearing; // deg * 100 : 0 to 360 current desired bearing to navigate long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target long crosstrack_bearing; // deg * 100 : 0 to 360 desired angle of plane to target int climb_rate; // m/s * 100 - For future implementation of controlled ascent/descent by rate byte loiter_radius; // meters float x_track_gain; int x_track_angle; long alt_to_hold; // how high we should be for RTL long nav_angle; long pitch_max; byte command_must_index; // current command memory location byte command_may_index; // current command memory location byte command_must_ID; // current command ID byte command_may_ID; // current command ID float altitude_gain; // in nav float distance_gain; // in nav // Airspeed // -------- int airspeed; // m/s * 100 // Throttle Failsafe // ------------------ boolean motor_armed; byte throttle_failsafe_enabled; int throttle_failsafe_value; byte throttle_failsafe_action; uint16_t log_bitmask; // Location Errors // --------------- long bearing_error; // deg * 100 : 0 to 36000 long altitude_error; // meters * 100 we are off in altitude float airspeed_error; // m / s * 100 float crosstrack_error; // meters we are off trackline long distance_error; // distance to the WP long yaw_error; // how off are we pointed // Sensors // ------- float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2, initialized above threshold for filter float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3, initialized above threshold for filter float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter // Magnetometer variables // ---------------------- int magnetom_x; int magnetom_y; int magnetom_z; float MAG_Heading; float mag_offset_x; float mag_offset_y; float mag_offset_z; float mag_declination; bool compass_enabled; // Barometer Sensor variables // -------------------------- int baro_offset; // used to correct drift of absolute pressue sensor unsigned long abs_pressure; unsigned long abs_pressure_ground; int ground_temperature; int temp_unfilt; // From IMU // -------- long roll_sensor; // degrees * 100 long pitch_sensor; // degrees * 100 long yaw_sensor; // degrees * 100 float roll; // radians float pitch; // radians float yaw; // radians // flight mode specific // -------------------- boolean takeoff_complete = false; // Flag for using take-off controls boolean land_complete = false; int landing_pitch; // pitch for landing set by commands //int takeoff_pitch; int takeoff_altitude; int landing_distance; // meters; // Loiter management // ----------------- long old_target_bearing; // deg * 100 int loiter_total; // deg : how many times to loiter * 360 int loiter_delta; // deg : how far we just turned int loiter_sum; // deg : how far we have turned around a waypoint long loiter_time; // millis : when we started LOITER mode int loiter_time_max; // millis : how long to stay in LOITER mode // these are the values for navigation control functions // ---------------------------------------------------- long nav_roll; // deg * 100 : target roll angle long nav_pitch; // deg * 100 : target pitch angle long nav_yaw; // deg * 100 : target yaw angle int nav_throttle; // 0-1000 for throttle control long command_yaw_start; // what angle were we to begin with long command_yaw_start_time; // when did we start turning int command_yaw_time; // how long we are turning long command_yaw_end; // what angle are we trying to be long command_yaw_delta; // how many degrees will we turn int command_yaw_speed; // how fast to turn byte command_yaw_dir; long old_alt; // used for managing altitude rates int velocity_land; long altitude_estimate; // for smoothing GPS output long distance_estimate; // for smoothing GPS output int throttle_min; // 0 - 1000 : Min throttle output - copter should be 0 int throttle_cruise; // 0 - 1000 : what will make the copter hover int throttle_max; // 0 - 1000 : Max throttle output // Waypoints // --------- long GPS_wp_distance; // meters - distance between plane and next waypoint long wp_distance; // meters - distance between plane and next waypoint long wp_totalDistance; // meters - distance between old and next waypoint byte wp_total; // # of Commands total including way byte wp_index; // Current active command index byte next_wp_index; // Current active command index // repeating event control // ----------------------- byte event_id; // what to do - see defines long event_timer; // when the event was asked for in ms int event_delay; // how long to delay the next firing of event in millis int event_repeat; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice int event_value; // per command value, such as PWM for servos int event_undo_value; // the value used to undo commands byte repeat_forever; byte undo_event; // counter for timing the undo // delay command // -------------- int delay_timeout; // used to delay commands long delay_start; // used to delay commands // 3D Location vectors // ------------------- struct Location home; // home location struct Location prev_WP; // last waypoint struct Location current_loc; // current location struct Location next_WP; // next waypoint struct Location tell_command; // command for telemetry struct Location next_command; // command preloaded long target_altitude; // used for long offset_altitude; // used for boolean home_is_set = false; // Flag for if we have gps lock and have set the home location // IMU variables // ------------- float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm) float COGX; // Course overground X axis float COGY = 1; // Course overground Y axis // Performance monitoring // ---------------------- long perf_mon_timer; //float imu_health; // Metric based on accel gain deweighting int G_Dt_max; // Max main loop cycle time in milliseconds byte gyro_sat_count; byte adc_constraints; byte renorm_sqrt_count; byte renorm_blowup_count; int gps_fix_count; byte gcs_messages_sent; // GCS // --- char GCS_buffer[53]; char display_PID = -1; // Flag used by DebugTerminal to indicate that the next PID calculation with this index should be displayed // System Timers // -------------- unsigned long fast_loopTimer; // Time in miliseconds of main control loop unsigned long fast_loopTimeStamp; // Time Stamp when fast loop was complete int mainLoop_count; unsigned long medium_loopTimer; // Time in miliseconds of navigation control loop byte medium_loopCounter; // Counters for branching from main control loop to slower loops byte medium_count; byte slow_loopCounter; byte superslow_loopCounter; unsigned long deltaMiliSeconds; // Delta Time in miliseconds unsigned long dTnav; // Delta Time in milliseconds for navigation computations unsigned long elapsedTime; // for doing custom events float load; // % MCU cycles used byte FastLoopGate = 9; // AC generic variables for future use byte gled_status = HIGH; long gled_timer; int gled_speed = 200; long cli_timer; byte cli_status = LOW; byte cli_step; byte fled_status; byte res1; byte res2; byte res3; byte res4; byte res5; byte cam_mode; byte cam1; byte cam2; byte cam3; int ires1; int ires2; int ires3; int ires4; boolean SW_DIP1; // closest to SW2 slider switch boolean SW_DIP2; boolean SW_DIP3; boolean SW_DIP4; // closest to header pins // Basic Initialization //--------------------- void setup() { init_ardupilot(); #if ENABLE_EXTRAINIT init_extras(); #endif } void loop() { // We want this to execute at 100Hz // -------------------------------- if (millis() - fast_loopTimer > 9) { deltaMiliSeconds = millis() - fast_loopTimer; fast_loopTimer = millis(); load = float(fast_loopTimeStamp - fast_loopTimer) / deltaMiliSeconds; G_Dt = (float)deltaMiliSeconds / 1000.f; // used by DCM integrator mainLoop_count++; // Execute the fast loop // --------------------- fast_loop(); fast_loopTimeStamp = millis(); } if (millis() - medium_loopTimer > 19) { medium_loopTimer = millis(); medium_loop(); /* commented out temporarily if (millis() - perf_mon_timer > 20000) { if (mainLoop_count != 0) { GCS.send_message(MSG_PERF_REPORT); if (log_bitmask & MASK_LOG_PM) Log_Write_Performance(); resetPerfData(); } }*/ } } // Main loop 50-100Hz void fast_loop() { // IMU DCM Algorithm read_AHRS(); // This is the fast loop - we want it to execute at 200Hz if possible // ------------------------------------------------------------------ if (deltaMiliSeconds > G_Dt_max) G_Dt_max = deltaMiliSeconds; // custom code/exceptions for flight modes // --------------------------------------- update_current_flight_mode(); // write out the servo PWM values // ------------------------------ set_servos_4(); } void medium_loop() { // Read radio // ---------- read_radio(); // read the radio first // This is the start of the medium (10 Hz) loop pieces // ----------------------------------------- switch(medium_loopCounter) { // This case deals with the GPS //------------------------------- case 0: medium_loopCounter++; update_GPS(); readCommands(); if(compass_enabled){ compass.read(); // Read magnetometer compass.calculate(roll, pitch); // Calculate heading } break; // This case performs some navigation computations //------------------------------------------------ case 1: medium_loopCounter++; if(GPS.new_data){ dTnav = millis() - medium_loopTimer; medium_loopTimer = millis(); } // calculate the plane's desired bearing // ------------------------------------- navigate(); break; // command processing //------------------- case 2: medium_loopCounter++; // Read Baro pressure // ------------------ read_barometer(); // altitude smoothing // ------------------ calc_altitude_error(); // perform next command // -------------------- update_commands(); break; // This case deals with sending high rate telemetry //------------------------------------------------- case 3: medium_loopCounter++; if (log_bitmask & MASK_LOG_ATTITUDE_MED && (log_bitmask & MASK_LOG_ATTITUDE_FAST == 0)) Log_Write_Attitude((int)roll_sensor, (int)pitch_sensor, (int)yaw_sensor); if (log_bitmask & MASK_LOG_CTUN) Log_Write_Control_Tuning(); if (log_bitmask & MASK_LOG_NTUN) Log_Write_Nav_Tuning(); if (log_bitmask & MASK_LOG_GPS) Log_Write_GPS(GPS.time, current_loc.lat, current_loc.lng, GPS.altitude, current_loc.alt, (long) GPS.ground_speed, GPS.ground_course, GPS.fix, GPS.num_sats); send_message(MSG_ATTITUDE); // Sends attitude data break; // This case controls the slow loop //--------------------------------- case 4: // shall we trim the copter? // ------------------------ read_trim_switch(); // shall we check for engine start? // -------------------------------- arm_motors(); medium_loopCounter = 0; slow_loop(); break; default: medium_loopCounter = 0; break; } // stuff that happens at 50 hz // --------------------------- // use Yaw to find our bearing error calc_bearing_error(); // guess how close we are - fixed observer calc calc_distance_error(); if (log_bitmask & MASK_LOG_ATTITUDE_FAST) Log_Write_Attitude((int)roll_sensor, (int)pitch_sensor, (int)yaw_sensor); if (log_bitmask & MASK_LOG_RAW) Log_Write_Raw(); #if GCS_PROTOCOL == 6 // This is here for Benjamin Pelletier. Please do not remove without checking with me. Doug W readgcsinput(); #endif #if ENABLE_HIL output_HIL(); #endif #if ENABLE_CAM camera_stabilization(); #endif #if ENABLE_AM flight_lights(); #endif #if ENABLE_xx do_something_usefull(); #endif if (millis() - perf_mon_timer > 20000) { if (mainLoop_count != 0) { send_message(MSG_PERF_REPORT); if (log_bitmask & MASK_LOG_PM) Log_Write_Performance(); resetPerfData(); } } } void slow_loop() { // This is the slow (3 1/3 Hz) loop pieces //---------------------------------------- switch (slow_loopCounter){ case 0: slow_loopCounter++; superslow_loopCounter++; if(superslow_loopCounter >=15) { // keep track of what page is in use in the log // *** We need to come up with a better scheme to handle this... eeprom_write_word((uint16_t *) EE_LAST_LOG_PAGE, DataFlash.GetWritePage()); superslow_loopCounter = 0; } break; case 1: slow_loopCounter++; //Serial.println(stabilize_rate_roll_pitch,3); // Read 3-position switch on radio // ------------------------------- read_control_switch(); //Serial.print("I: ") //Serial.println(rc_1.get_integrator(), 1); // Read main battery voltage if hooked up - does not read the 5v from radio // ------------------------------------------------------------------------ #if BATTERY_EVENT == 1 read_battery(); #endif break; case 2: slow_loopCounter = 0; update_events(); break; default: slow_loopCounter = 0; break; } } void update_GPS(void) { GPS.update(); update_GPS_light(); if (GPS.new_data && GPS.fix) { send_message(MSG_LOCATION); // for performance // --------------- gps_fix_count++; if(ground_start_count > 1){ ground_start_count--; } else if (ground_start_count == 1) { // We countdown N number of good GPS fixes // so that the altitude is more accurate // ------------------------------------- if (current_loc.lat == 0) { Serial.println("!! bad loc"); ground_start_count = 5; } else { if (log_bitmask & MASK_LOG_CMD) Log_Write_Startup(TYPE_GROUNDSTART_MSG); init_home(); // init altitude current_loc.alt = GPS.altitude; ground_start_count = 0; } } /* disabled for now // baro_offset is an integrator for the gps altitude error baro_offset += altitude_gain * (float)(GPS.altitude - current_loc.alt); */ current_loc.lng = GPS.longitude; // Lon * 10 * *7 current_loc.lat = GPS.latitude; // Lat * 10 * *7 COGX = cos(ToRad(GPS.ground_course / 100.0)); COGY = sin(ToRad(GPS.ground_course / 100.0)); } } void update_current_flight_mode(void) { if(control_mode == AUTO){ //Serial.print("!"); //crash_checker(); switch(command_must_ID){ //case CMD_TAKEOFF: // break; //case CMD_LAND: // break; default: // Intput Pitch, Roll, Yaw and Throttle // ------------------------------------ calc_nav_pid(); calc_nav_roll(); calc_nav_pitch(); // based on altitude error // ----------------------- calc_nav_throttle(); // Output Pitch, Roll, Yaw and Throttle // ------------------------------------ // perform stabilzation output_stabilize(); // apply throttle control output_auto_throttle(); break; } }else{ switch(control_mode){ case STABILIZE: // Intput Pitch, Roll, Yaw and Throttle // ------------------------------------ // clear any AP naviagtion values nav_pitch = 0; nav_roll = 0; // get desired yaw control from radio input_yaw_hold(); // Output Pitch, Roll, Yaw and Throttle // ------------------------------------ // apply throttle control output_manual_throttle(); // perform stabilzation output_stabilize(); break; case FBW: // we are currently using manual throttle for testing. fbw_timer++; //call at 5 hz if(fbw_timer > 20){ fbw_timer = 0; if(home_is_set == false){ current_loc.lat = home.lat = 0; current_loc.lng = home.lng = 0; } next_WP.lat = home.lat + rc_1.control_in /5; // 10 meteres next_WP.lng = home.lng -rc_2.control_in /5; // 10 meteres // waypoint distance from plane // ---------------------------- wp_distance = GPS_wp_distance = getDistance(¤t_loc, &next_WP); // target_bearing is where we should be heading // -------------------------------------------- nav_bearing = target_bearing = get_bearing(¤t_loc, &next_WP); // not really needed //update_navigation(); } // Intput Pitch, Roll, Yaw and Throttle // ------------------------------------ calc_nav_pid(); calc_nav_roll(); calc_nav_pitch(); // get desired yaw control from radio input_yaw_hold(); // Output Pitch, Roll, Yaw and Throttle // ------------------------------------ // apply throttle control output_manual_throttle(); // perform stabilzation output_stabilize(); break; case ALT_HOLD: // Intput Pitch, Roll, Yaw and Throttle // ------------------------------------ // clear any AP naviagtion values nav_pitch = 0; nav_roll = 0; // get desired height from the throttle next_WP.alt = home.alt + (rc_3.control_in * 4) -100; // 0 - 1000 (40 meters) // get desired yaw control from radio input_yaw_hold(); // based on altitude error // ----------------------- calc_nav_throttle(); // Output Pitch, Roll, Yaw and Throttle // ------------------------------------ // apply throttle control output_auto_throttle(); // perform stabilzation output_stabilize(); break; case RTL: // Intput Pitch, Roll, Yaw and Throttle // ------------------------------------ calc_nav_pid(); calc_nav_roll(); calc_nav_pitch(); // based on altitude error // ----------------------- calc_nav_throttle(); // Output Pitch, Roll, Yaw and Throttle // ------------------------------------ // apply throttle control output_auto_throttle(); // perform stabilzation output_stabilize(); break; case POSITION_HOLD: // Intput Pitch, Roll, Yaw and Throttle // ------------------------------------ calc_nav_pid(); calc_nav_roll(); calc_nav_pitch(); // get desired yaw control from radio input_yaw_hold(); // based on altitude error // ----------------------- calc_nav_throttle(); // Output Pitch, Roll, Yaw and Throttle // ------------------------------------ // apply throttle control output_auto_throttle(); // perform stabilzation output_stabilize(); break; default: //Serial.print("$"); break; } } } // called after a GPS read void update_navigation() { // wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS // ------------------------------------------------------------------------ // distance and bearing calcs only if(control_mode == AUTO){ verify_must(); verify_may(); }else{ switch(control_mode){ case RTL: update_crosstrack(); break; } } } void read_AHRS(void) { // Perform IMU calculations and get attitude info //----------------------------------------------------- dcm.update_DCM(G_Dt); roll_sensor = dcm.roll_sensor; pitch_sensor = dcm.pitch_sensor; yaw_sensor = dcm.yaw_sensor; }