#include "Copter.h" /* * High level calls to set and update flight modes logic for individual * flight modes is in control_acro.cpp, control_stabilize.cpp, etc */ // return the static controller object corresponding to supplied mode Copter::FlightMode *Copter::flightmode_for_mode(const uint8_t mode) { Copter::FlightMode *ret = nullptr; switch (mode) { case ACRO: ret = &flightmode_acro; break; case STABILIZE: ret = &flightmode_stabilize; break; case ALT_HOLD: ret = &flightmode_althold; break; case AUTO: ret = &flightmode_auto; break; case CIRCLE: ret = &flightmode_circle; break; case LOITER: ret = &flightmode_loiter; break; case GUIDED: ret = &flightmode_guided; break; case LAND: ret = &flightmode_land; break; case RTL: ret = &flightmode_rtl; break; case DRIFT: ret = &flightmode_drift; break; case SPORT: ret = &flightmode_sport; break; case FLIP: ret = &flightmode_flip; break; #if AUTOTUNE_ENABLED == ENABLED case AUTOTUNE: ret = &flightmode_autotune; break; #endif #if POSHOLD_ENABLED == ENABLED case POSHOLD: ret = &flightmode_poshold; break; #endif case BRAKE: ret = &flightmode_brake; break; case THROW: ret = &flightmode_throw; break; case AVOID_ADSB: ret = &flightmode_avoid_adsb; break; case GUIDED_NOGPS: ret = &flightmode_guided_nogps; break; case SMART_RTL: ret = &flightmode_smartrtl; break; default: break; } return ret; } // set_mode - change flight mode and perform any necessary initialisation // optional force parameter used to force the flight mode change (used only first time mode is set) // returns true if mode was successfully set // ACRO, STABILIZE, ALTHOLD, LAND, DRIFT and SPORT can always be set successfully but the return state of other flight modes should be checked and the caller should deal with failures appropriately bool Copter::set_mode(control_mode_t mode, mode_reason_t reason) { // return immediately if we are already in the desired mode if (mode == control_mode) { control_mode_reason = reason; return true; } Copter::FlightMode *new_flightmode = flightmode_for_mode(mode); if (new_flightmode == nullptr) { gcs().send_text(MAV_SEVERITY_WARNING,"No such mode"); Log_Write_Error(ERROR_SUBSYSTEM_FLIGHT_MODE,mode); return false; } bool ignore_checks = !motors->armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform if (! new_flightmode->init(ignore_checks)) { gcs().send_text(MAV_SEVERITY_WARNING,"Flight mode change failed"); Log_Write_Error(ERROR_SUBSYSTEM_FLIGHT_MODE,mode); return false; } #if FRAME_CONFIG == HELI_FRAME // do not allow helis to enter a non-manual throttle mode if the // rotor runup is not complete if (!ignore_checks && !new_flightmode->has_manual_throttle() && !motors->rotor_runup_complete()){ return false; } #endif // perform any cleanup required by previous flight mode exit_mode(flightmode, new_flightmode); // update flight mode flightmode = new_flightmode; control_mode = mode; control_mode_reason = reason; DataFlash.Log_Write_Mode(control_mode); adsb.set_is_auto_mode((mode == AUTO) || (mode == RTL) || (mode == GUIDED)); #if AC_FENCE == ENABLED // pilot requested flight mode change during a fence breach indicates pilot is attempting to manually recover // this flight mode change could be automatic (i.e. fence, battery, GPS or GCS failsafe) // but it should be harmless to disable the fence temporarily in these situations as well fence.manual_recovery_start(); #endif #if FRSKY_TELEM_ENABLED == ENABLED frsky_telemetry.update_control_mode(control_mode); #endif #if CAMERA == ENABLED camera.set_is_auto_mode(control_mode == AUTO); #endif // update notify object notify_flight_mode(); // return success return true; } // update_flight_mode - calls the appropriate attitude controllers based on flight mode // called at 100hz or more void Copter::update_flight_mode() { // Update EKF speed limit - used to limit speed when we are using optical flow ahrs.getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler); flightmode->run(); } // exit_mode - high level call to organise cleanup as a flight mode is exited void Copter::exit_mode(Copter::FlightMode *&old_flightmode, Copter::FlightMode *&new_flightmode) { #if AUTOTUNE_ENABLED == ENABLED if (old_flightmode == &flightmode_autotune) { flightmode_autotune.stop(); } #endif // stop mission when we leave auto mode if (old_flightmode == &flightmode_auto) { if (mission.state() == AP_Mission::MISSION_RUNNING) { mission.stop(); } #if MOUNT == ENABLED camera_mount.set_mode_to_default(); #endif // MOUNT == ENABLED } // smooth throttle transition when switching from manual to automatic flight modes if (old_flightmode->has_manual_throttle() && !new_flightmode->has_manual_throttle() && motors->armed() && !ap.land_complete) { // this assumes all manual flight modes use get_pilot_desired_throttle to translate pilot input to output throttle set_accel_throttle_I_from_pilot_throttle(); } // cancel any takeoffs in progress takeoff_stop(); // call smart_rtl cleanup if (old_flightmode == &flightmode_smartrtl) { flightmode_smartrtl.exit(); } #if FRAME_CONFIG == HELI_FRAME // firmly reset the flybar passthrough to false when exiting acro mode. if (old_flightmode == &flightmode_acro) { attitude_control->use_flybar_passthrough(false, false); motors->set_acro_tail(false); } // if we are changing from a mode that did not use manual throttle, // stab col ramp value should be pre-loaded to the correct value to avoid a twitch // heli_stab_col_ramp should really only be active switching between Stabilize and Acro modes if (!old_flightmode->has_manual_throttle()){ if (new_flightmode == &flightmode_stabilize){ input_manager.set_stab_col_ramp(1.0); } else if (new_flightmode == &flightmode_acro){ input_manager.set_stab_col_ramp(0.0); } } #endif //HELI_FRAME } // notify_flight_mode - sets notify object based on current flight mode. Only used for OreoLED notify device void Copter::notify_flight_mode() { AP_Notify::flags.autopilot_mode = flightmode->is_autopilot(); notify.set_flight_mode_str(flightmode->name4()); } void Copter::FlightMode::update_navigation() { // run autopilot to make high level decisions about control modes run_autopilot(); }