/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #include "AP_InertialSensor_SITL.h" #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL const extern AP_HAL::HAL& hal; AP_InertialSensor_SITL::AP_InertialSensor_SITL(AP_InertialSensor &imu) : AP_InertialSensor_Backend(imu) { } /* detect the sensor */ AP_InertialSensor_Backend *AP_InertialSensor_SITL::detect(AP_InertialSensor &_imu) { AP_InertialSensor_SITL *sensor = new AP_InertialSensor_SITL(_imu); if (sensor == NULL) { return NULL; } if (!sensor->init_sensor()) { delete sensor; return NULL; } return sensor; } bool AP_InertialSensor_SITL::init_sensor(void) { sitl = (SITL::SITL *)AP_Param::find_object("SIM_"); if (sitl == nullptr) { return false; } // grab the used instances for (uint8_t i=0; iupdate_rate_hz); accel_instance[i] = _imu.register_accel(sitl->update_rate_hz); } hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_InertialSensor_SITL::timer_update, void)); _product_id = AP_PRODUCT_ID_NONE; return true; } void AP_InertialSensor_SITL::timer_update(void) { // minimum noise levels are 2 bits, but averaged over many // samples, giving around 0.01 m/s/s float accel_noise = 0.01f; float accel2_noise = 0.01f; // minimum gyro noise is also less than 1 bit float gyro_noise = ToRad(0.04f); if (sitl->motors_on) { // add extra noise when the motors are on accel_noise += sitl->accel_noise; accel2_noise += sitl->accel2_noise; gyro_noise += ToRad(sitl->gyro_noise); } // get accel bias (add only to first accelerometer) Vector3f accel_bias = sitl->accel_bias.get(); float xAccel1 = sitl->state.xAccel + accel_noise * rand_float() + accel_bias.x; float yAccel1 = sitl->state.yAccel + accel_noise * rand_float() + accel_bias.y; float zAccel1 = sitl->state.zAccel + accel_noise * rand_float() + accel_bias.z; float xAccel2 = sitl->state.xAccel + accel2_noise * rand_float(); float yAccel2 = sitl->state.yAccel + accel2_noise * rand_float(); float zAccel2 = sitl->state.zAccel + accel2_noise * rand_float(); if (fabsf(sitl->accel_fail) > 1.0e-6f) { xAccel1 = sitl->accel_fail; yAccel1 = sitl->accel_fail; zAccel1 = sitl->accel_fail; } Vector3f accel0 = Vector3f(xAccel1, yAccel1, zAccel1) + _imu.get_accel_offsets(0); Vector3f accel1 = Vector3f(xAccel2, yAccel2, zAccel2) + _imu.get_accel_offsets(1); _notify_new_accel_raw_sample(accel_instance[0], accel0); _notify_new_accel_raw_sample(accel_instance[1], accel1); float p = radians(sitl->state.rollRate) + gyro_drift(); float q = radians(sitl->state.pitchRate) + gyro_drift(); float r = radians(sitl->state.yawRate) + gyro_drift(); float p1 = p + gyro_noise * rand_float(); float q1 = q + gyro_noise * rand_float(); float r1 = r + gyro_noise * rand_float(); float p2 = p + gyro_noise * rand_float(); float q2 = q + gyro_noise * rand_float(); float r2 = r + gyro_noise * rand_float(); Vector3f gyro0 = Vector3f(p1, q1, r1) + _imu.get_gyro_offsets(0); Vector3f gyro1 = Vector3f(p2, q2, r2) + _imu.get_gyro_offsets(1); // add in gyro scaling Vector3f scale = sitl->gyro_scale; gyro0.x *= (1 + scale.x*0.01); gyro0.y *= (1 + scale.y*0.01); gyro0.z *= (1 + scale.z*0.01); gyro1.x *= (1 + scale.x*0.01); gyro1.y *= (1 + scale.y*0.01); gyro1.z *= (1 + scale.z*0.01); _notify_new_gyro_raw_sample(gyro_instance[0], gyro0); _notify_new_gyro_raw_sample(gyro_instance[1], gyro1); } // generate a random float between -1 and 1 float AP_InertialSensor_SITL::rand_float(void) { return ((((unsigned)random()) % 2000000) - 1.0e6) / 1.0e6; } float AP_InertialSensor_SITL::gyro_drift(void) { if (sitl->drift_speed == 0.0f || sitl->drift_time == 0.0f) { return 0; } double period = sitl->drift_time * 2; double minutes = fmod(AP_HAL::micros64() / 60.0e6, period); if (minutes < period/2) { return minutes * ToRad(sitl->drift_speed); } return (period - minutes) * ToRad(sitl->drift_speed); } bool AP_InertialSensor_SITL::update(void) { for (uint8_t i=0; i