/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* AP_Periph main firmware To flash this firmware on Linux use: st-flash write build/f103-periph/bin/AP_Periph.bin 0x8006000 */ #include #include #include "AP_Periph.h" #include #if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS #include #include #include #endif #ifndef HAL_PERIPH_HWESC_SERIAL_PORT #define HAL_PERIPH_HWESC_SERIAL_PORT 3 #endif extern const AP_HAL::HAL &hal; AP_Periph_FW periph; void setup(); void loop(); const AP_HAL::HAL& hal = AP_HAL::get_HAL(); #if CONFIG_HAL_BOARD == HAL_BOARD_SITL void stm32_watchdog_init() {} void stm32_watchdog_pat() {} #endif void setup(void) { periph.init(); } void loop(void) { periph.update(); } static uint32_t start_ms; AP_Periph_FW::AP_Periph_FW() #if HAL_LOGGING_ENABLED : logger(g.log_bitmask) #endif { if (_singleton != nullptr) { AP_HAL::panic("AP_Periph_FW must be singleton"); } _singleton = this; } #if HAL_LOGGING_ENABLED const struct LogStructure AP_Periph_FW::log_structure[] = { LOG_COMMON_STRUCTURES, }; #endif void AP_Periph_FW::init() { // always run with watchdog enabled. This should have already been // setup by the bootloader, but if not then enable now #ifndef DISABLE_WATCHDOG stm32_watchdog_init(); #endif stm32_watchdog_pat(); #if !HAL_GCS_ENABLED hal.serial(0)->begin(AP_SERIALMANAGER_CONSOLE_BAUD, 32, 32); #endif hal.serial(3)->begin(115200, 128, 256); load_parameters(); stm32_watchdog_pat(); can_start(); #ifdef HAL_PERIPH_ENABLE_NETWORKING networking.init(); #endif #if HAL_GCS_ENABLED stm32_watchdog_pat(); gcs().init(); #endif serial_manager.init(); #if HAL_GCS_ENABLED gcs().setup_console(); gcs().setup_uarts(); gcs().send_text(MAV_SEVERITY_INFO, "AP_Periph GCS Initialised!"); #endif stm32_watchdog_pat(); #ifdef HAL_BOARD_AP_PERIPH_ZUBAXGNSS // setup remapping register for ZubaxGNSS uint32_t mapr = AFIO->MAPR; mapr &= ~AFIO_MAPR_SWJ_CFG; mapr |= AFIO_MAPR_SWJ_CFG_JTAGDISABLE; AFIO->MAPR = mapr | AFIO_MAPR_CAN_REMAP_REMAP2 | AFIO_MAPR_SPI3_REMAP; #endif #if HAL_LOGGING_ENABLED logger.Init(log_structure, ARRAY_SIZE(log_structure)); #endif check_firmware_print(); if (hal.util->was_watchdog_reset()) { printf("Reboot after watchdog reset\n"); } #if AP_STATS_ENABLED node_stats.init(); #endif #ifdef HAL_PERIPH_ENABLE_GPS if (gps.get_type(0) != AP_GPS::GPS_Type::GPS_TYPE_NONE && g.gps_port >= 0) { serial_manager.set_protocol_and_baud(g.gps_port, AP_SerialManager::SerialProtocol_GPS, AP_SERIALMANAGER_GPS_BAUD); #if HAL_LOGGING_ENABLED #define MASK_LOG_GPS (1<<2) gps.set_log_gps_bit(MASK_LOG_GPS); #endif gps.init(serial_manager); } #endif #ifdef HAL_PERIPH_ENABLE_MAG compass.init(); #endif #ifdef HAL_PERIPH_ENABLE_BARO baro.init(); #endif #ifdef HAL_PERIPH_ENABLE_BATTERY battery.lib.init(); #endif #ifdef HAL_PERIPH_ENABLE_RCIN rcin_init(); #endif #if defined(HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY) || defined(HAL_PERIPH_ENABLE_RC_OUT) hal.rcout->init(); #endif #ifdef HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY hal.rcout->set_serial_led_num_LEDs(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY, HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY, AP_HAL::RCOutput::MODE_NEOPIXEL); #endif #ifdef HAL_PERIPH_ENABLE_RC_OUT rcout_init(); #endif #ifdef HAL_PERIPH_ENABLE_ADSB adsb_init(); #endif #ifdef HAL_PERIPH_ENABLE_EFI if (efi.enabled() && g.efi_port >= 0) { auto *uart = hal.serial(g.efi_port); if (uart != nullptr) { uart->begin(g.efi_baudrate); serial_manager.set_protocol_and_baud(g.efi_port, AP_SerialManager::SerialProtocol_EFI, g.efi_baudrate); efi.init(); } } #endif #if AP_KDECAN_ENABLED kdecan.init(); #endif #ifdef HAL_PERIPH_ENABLE_AIRSPEED #if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS const bool pins_enabled = ChibiOS::I2CBus::check_select_pins(0x01); if (pins_enabled) { ChibiOS::I2CBus::set_bus_to_floating(0); #ifdef HAL_GPIO_PIN_LED_CAN_I2C palWriteLine(HAL_GPIO_PIN_LED_CAN_I2C, 1); #endif } else { // Note: logging of ARSPD is not enabled currently. To enable, call airspeed.set_log_bit(); here airspeed.init(); } #else // Note: logging of ARSPD is not enabled currently. To enable, call airspeed.set_log_bit(); here airspeed.init(); #endif #endif #ifdef HAL_PERIPH_ENABLE_RANGEFINDER if (rangefinder.get_type(0) != RangeFinder::Type::NONE) { if (g.rangefinder_port >= 0) { // init uart for serial rangefinders auto *uart = hal.serial(g.rangefinder_port); if (uart != nullptr) { uart->begin(g.rangefinder_baud); serial_manager.set_protocol_and_baud(g.rangefinder_port, AP_SerialManager::SerialProtocol_Rangefinder, g.rangefinder_baud); } } rangefinder.init(ROTATION_NONE); } #endif #if HAL_PROXIMITY_ENABLED if (proximity.get_type(0) != AP_Proximity::Type::None && g.proximity_port >= 0) { auto *uart = hal.serial(g.proximity_port); if (uart != nullptr) { uart->begin(g.proximity_baud); serial_manager.set_protocol_and_baud(g.proximity_port, AP_SerialManager::SerialProtocol_Lidar360, g.proximity_baud); proximity.init(); } } #endif #ifdef HAL_PERIPH_ENABLE_PWM_HARDPOINT pwm_hardpoint_init(); #endif #ifdef HAL_PERIPH_ENABLE_HWESC hwesc_telem.init(hal.serial(HAL_PERIPH_HWESC_SERIAL_PORT)); #endif #ifdef HAL_PERIPH_ENABLE_ESC_APD for (uint8_t i = 0; i < ESC_NUMBERS; i++) { const uint8_t port = g.esc_serial_port[i]; if (port < SERIALMANAGER_NUM_PORTS) { // skip bad ports apd_esc_telem[i] = new ESC_APD_Telem (hal.serial(port), g.pole_count[i]); } } #endif #ifdef HAL_PERIPH_ENABLE_MSP if (g.msp_port >= 0) { msp_init(hal.serial(g.msp_port)); } #endif #if AP_TEMPERATURE_SENSOR_ENABLED temperature_sensor.init(); #endif #if HAL_NMEA_OUTPUT_ENABLED nmea.init(); #endif #ifdef HAL_PERIPH_ENABLE_RPM rpm_sensor.init(); #endif #ifdef HAL_PERIPH_ENABLE_NOTIFY notify.init(); #endif #if AP_SCRIPTING_ENABLED scripting.init(); #endif start_ms = AP_HAL::millis(); } #if (defined(HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY) && HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY == 8) || defined(HAL_PERIPH_ENABLE_NOTIFY) /* rotating rainbow pattern on startup */ void AP_Periph_FW::update_rainbow() { #ifdef HAL_PERIPH_ENABLE_NOTIFY if (notify.get_led_len() != 8) { return; } #endif static bool rainbow_done; if (rainbow_done) { return; } uint32_t now = AP_HAL::millis(); if (now - start_ms > 1500) { rainbow_done = true; #if defined (HAL_PERIPH_ENABLE_NOTIFY) periph.notify.handle_rgb(0, 0, 0); #elif defined(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY) hal.rcout->set_serial_led_rgb_data(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY, -1, 0, 0, 0); hal.rcout->serial_led_send(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY); #endif return; } static uint32_t last_update_ms; const uint8_t step_ms = 30; if (now - last_update_ms < step_ms) { return; } const struct { uint8_t red; uint8_t green; uint8_t blue; } rgb_rainbow[] = { { 255, 0, 0 }, { 255, 127, 0 }, { 255, 255, 0 }, { 0, 255, 0 }, { 0, 0, 255 }, { 75, 0, 130 }, { 143, 0, 255 }, { 0, 0, 0 }, }; last_update_ms = now; static uint8_t step; const uint8_t nsteps = ARRAY_SIZE(rgb_rainbow); float brightness = 0.3; for (uint8_t n=0; n<8; n++) { uint8_t i = (step + n) % nsteps; #if defined (HAL_PERIPH_ENABLE_NOTIFY) periph.notify.handle_rgb( #elif defined(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY) hal.rcout->set_serial_led_rgb_data(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY, n, #endif rgb_rainbow[i].red*brightness, rgb_rainbow[i].green*brightness, rgb_rainbow[i].blue*brightness); } step++; #if defined(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY) hal.rcout->serial_led_send(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY); #endif } #endif // HAL_PERIPH_ENABLE_NOTIFY #if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS && CH_DBG_ENABLE_STACK_CHECK == TRUE void AP_Periph_FW::show_stack_free() { const uint32_t isr_stack_size = uint32_t((const uint8_t *)&__main_stack_end__ - (const uint8_t *)&__main_stack_base__); can_printf("ISR %u/%u", unsigned(stack_free(&__main_stack_base__)), unsigned(isr_stack_size)); for (thread_t *tp = chRegFirstThread(); tp; tp = chRegNextThread(tp)) { uint32_t total_stack; if (tp->wabase == (void*)&__main_thread_stack_base__) { // main thread has its stack separated from the thread context total_stack = uint32_t((const uint8_t *)&__main_thread_stack_end__ - (const uint8_t *)&__main_thread_stack_base__); } else { // all other threads have their thread context pointer // above the stack top total_stack = uint32_t(tp) - uint32_t(tp->wabase); } can_printf("%s STACK=%u/%u\n", tp->name, unsigned(stack_free(tp->wabase)), unsigned(total_stack)); } } #endif void AP_Periph_FW::update() { #if AP_STATS_ENABLED node_stats.update(); #endif static uint32_t last_led_ms; uint32_t now = AP_HAL::millis(); if (now - last_led_ms > 1000) { last_led_ms = now; #ifdef HAL_GPIO_PIN_LED if (!no_iface_finished_dna) { palToggleLine(HAL_GPIO_PIN_LED); } #endif #if 0 #ifdef HAL_PERIPH_ENABLE_GPS hal.serial(0)->printf("GPS status: %u\n", (unsigned)gps.status()); #endif #ifdef HAL_PERIPH_ENABLE_MAG const Vector3f &field = compass.get_field(); hal.serial(0)->printf("MAG (%d,%d,%d)\n", int(field.x), int(field.y), int(field.z)); #endif #ifdef HAL_PERIPH_ENABLE_BARO hal.serial(0)->printf("BARO H=%u P=%.2f T=%.2f\n", baro.healthy(), baro.get_pressure(), baro.get_temperature()); #endif #ifdef HAL_PERIPH_ENABLE_RANGEFINDER hal.serial(0)->printf("RNG %u %ucm\n", rangefinder.num_sensors(), rangefinder.distance_cm_orient(ROTATION_NONE)); #endif hal.scheduler->delay(1); #endif #ifdef HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY hal.rcout->set_serial_led_num_LEDs(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY, HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY, AP_HAL::RCOutput::MODE_NEOPIXEL); #endif #ifdef HAL_PERIPH_LISTEN_FOR_SERIAL_UART_REBOOT_CMD_PORT check_for_serial_reboot_cmd(HAL_PERIPH_LISTEN_FOR_SERIAL_UART_REBOOT_CMD_PORT); #endif #ifdef HAL_PERIPH_ENABLE_RC_OUT rcout_init_1Hz(); #endif #if HAL_GCS_ENABLED gcs().send_message(MSG_HEARTBEAT); gcs().send_message(MSG_SYS_STATUS); #endif } static uint32_t last_error_ms; const auto &ierr = AP::internalerror(); if (now - last_error_ms > 5000 && ierr.errors()) { // display internal errors as DEBUG every 5s last_error_ms = now; can_printf("IERR 0x%x %u", unsigned(ierr.errors()), unsigned(ierr.last_error_line())); } #if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS && CH_DBG_ENABLE_STACK_CHECK == TRUE static uint32_t last_debug_ms; if (debug_option_is_set(DebugOptions::SHOW_STACK) && now - last_debug_ms > 5000) { last_debug_ms = now; show_stack_free(); } #endif if (debug_option_is_set(DebugOptions::AUTOREBOOT) && AP_HAL::millis() > 15000) { // attempt reboot with HOLD after 15s periph.prepare_reboot(); #if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS set_fast_reboot((rtc_boot_magic)(RTC_BOOT_HOLD)); NVIC_SystemReset(); #endif } #ifdef HAL_PERIPH_ENABLE_BATTERY if (now - battery.last_read_ms >= 100) { // update battery at 10Hz battery.last_read_ms = now; battery.lib.read(); } #endif #ifdef HAL_PERIPH_ENABLE_RCIN rcin_update(); #endif static uint32_t fiftyhz_last_update_ms; if (now - fiftyhz_last_update_ms >= 20) { // update at 50Hz fiftyhz_last_update_ms = now; #ifdef HAL_PERIPH_ENABLE_NOTIFY notify.update(); #endif #if HAL_GCS_ENABLED gcs().update_receive(); gcs().update_send(); #endif } #if HAL_NMEA_OUTPUT_ENABLED nmea.update(); #endif #if AP_TEMPERATURE_SENSOR_ENABLED temperature_sensor.update(); #endif #ifdef HAL_PERIPH_ENABLE_RPM if (now - rpm_last_update_ms >= 100) { rpm_last_update_ms = now; rpm_sensor.update(); } #endif #if HAL_LOGGING_ENABLED logger.periodic_tasks(); #endif can_update(); #ifdef HAL_PERIPH_ENABLE_NETWORKING networking.update(); #endif #if (defined(HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY) && HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY == 8) || defined(HAL_PERIPH_ENABLE_NOTIFY) update_rainbow(); #endif #ifdef HAL_PERIPH_ENABLE_ADSB adsb_update(); #endif } #ifdef HAL_PERIPH_LISTEN_FOR_SERIAL_UART_REBOOT_CMD_PORT // check for uploader.py reboot command void AP_Periph_FW::check_for_serial_reboot_cmd(const int8_t serial_index) { // These are the string definitions in uploader.py // NSH_INIT = bytearray(b'\x0d\x0d\x0d') // NSH_REBOOT_BL = b"reboot -b\n" // NSH_REBOOT = b"reboot\n" // This is the command sequence that is sent from uploader.py // self.__send(uploader.NSH_INIT) // self.__send(uploader.NSH_REBOOT_BL) // self.__send(uploader.NSH_INIT) // self.__send(uploader.NSH_REBOOT) for (uint8_t i=0; i= 0 && serial_index != i) { // a specific serial port was selected but this is not it continue; } auto *uart = hal.serial(i); if (uart == nullptr || !uart->is_initialized()) { continue; } uint32_t available = MIN(uart->available(), 1000U); while (available-- > 0) { const char reboot_string[] = "\r\r\rreboot -b\n\r\r\rreboot\n"; const char reboot_string_len = sizeof(reboot_string)-1; // -1 is to remove the null termination static uint16_t index[hal.num_serial]; uint8_t data; if (!uart->read(data)) { // read error continue; } if (index[i] >= reboot_string_len || (uint8_t)data != reboot_string[index[i]]) { // don't have a perfect match, start over index[i] = 0; continue; } index[i]++; if (index[i] == reboot_string_len) { // received reboot msg. Trigger a reboot and stay in the bootloader prepare_reboot(); hal.scheduler->reboot(true); } } } } #endif // HAL_PERIPH_LISTEN_FOR_SERIAL_UART_REBOOT_CMD_PORT // prepare for a safe reboot where PWMs and params are gracefully disabled // This is copied from AP_Vehicle::reboot(bool hold_in_bootloader) minus the actual reboot void AP_Periph_FW::prepare_reboot() { #ifdef HAL_PERIPH_ENABLE_RC_OUT // force safety on hal.rcout->force_safety_on(); #endif // flush pending parameter writes AP_Param::flush(); // do not process incoming mavlink messages while we delay: hal.scheduler->register_delay_callback(nullptr, 5); // delay to give the ACK a chance to get out, the LEDs to flash, // the IO board safety to be forced on, the parameters to flush, hal.scheduler->delay(40); } AP_Periph_FW *AP_Periph_FW::_singleton; AP_Periph_FW& AP::periph() { return *AP_Periph_FW::get_singleton(); } AP_HAL_MAIN();