/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
rover simulator class
*/
#include "SIM_Rover.h"
#include
#include
#include
namespace SITL {
SimRover::SimRover(const char *frame_str) :
Aircraft(frame_str)
{
skid_steering = strstr(frame_str, "skid") != nullptr;
if (skid_steering) {
printf("SKID Steering Rover Simulation Started\n");
// these are taken from a 6V wild thumper with skid steering,
// with a sabertooth controller
max_accel = 14;
max_speed = 4;
return;
}
vectored_thrust = strstr(frame_str, "vector") != nullptr;
if (vectored_thrust) {
printf("Vectored Thrust Rover Simulation Started\n");
}
omni3 = strstr(frame_str, "omni3mecanum") != nullptr;
if (omni3) {
printf("Omni3 Mecanum Rover Simulation Started\n");
}
lock_step_scheduled = true;
}
/*
return turning circle (diameter) in meters for steering angle proportion in degrees
*/
float SimRover::turn_circle(float steering) const
{
if (fabsf(steering) < 1.0e-6) {
return 0;
}
return turning_circle * sinf(radians(max_wheel_turn)) / sinf(radians(steering*max_wheel_turn));
}
/*
return yaw rate in degrees/second given steering_angle and speed
*/
float SimRover::calc_yaw_rate(float steering, float speed)
{
if (skid_steering) {
return constrain_float(steering * skid_turn_rate, -MAX_YAW_RATE, MAX_YAW_RATE);
}
if (vectored_thrust) {
return constrain_float(steering * vectored_turn_rate_max, -MAX_YAW_RATE, MAX_YAW_RATE);
}
if (fabsf(steering) < 1.0e-6 or fabsf(speed) < 1.0e-6) {
return 0;
}
float d = turn_circle(steering);
float c = M_PI * d;
float t = c / speed;
float rate = constrain_float(360.0f / t, -MAX_YAW_RATE, MAX_YAW_RATE);
return rate;
}
/*
return lateral acceleration in m/s/s
*/
float SimRover::calc_lat_accel(float steering_angle, float speed)
{
float yaw_rate = calc_yaw_rate(steering_angle, speed);
float accel = radians(yaw_rate) * speed;
return accel;
}
/*
update the rover simulation by one time step
*/
void SimRover::update(const struct sitl_input &input)
{
// how much time has passed?
float delta_time = frame_time_us * 1.0e-6f;
// update gyro and accel_body according to frame type
if (omni3) {
update_omni3(input, delta_time);
} else {
update_ackermann_or_skid(input, delta_time);
}
// common to all rovers
// now in earth frame
Vector3f accel_earth = dcm * accel_body;
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
// we are on the ground, so our vertical accel is zero
accel_earth.z = 0;
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS));
// new velocity vector
velocity_ef += accel_earth * delta_time;
// new position vector
position += (velocity_ef * delta_time).todouble();
update_external_payload(input);
// update lat/lon/altitude
update_position();
time_advance();
// update magnetic field
update_mag_field_bf();
}
/*
update the ackermann or skid rover simulation by one time step
*/
void SimRover::update_ackermann_or_skid(const struct sitl_input &input, float delta_time)
{
float steering, throttle;
// if in skid steering mode the steering and throttle values are used for motor1 and motor2
if (skid_steering) {
float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
steering = motor1 - motor2;
throttle = 0.5*(motor1 + motor2);
} else {
steering = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
throttle = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
// vectored thrust conversion
if (vectored_thrust) {
const float steering_angle_rad = radians(steering * vectored_angle_max);
steering = sinf(steering_angle_rad) * throttle;
throttle *= cosf(steering_angle_rad);
}
}
// speed in m/s in body frame
Vector3f velocity_body = dcm.transposed() * velocity_ef;
// speed along x axis, +ve is forward
float speed = velocity_body.x;
// yaw rate in degrees/s
float yaw_rate = calc_yaw_rate(steering, speed);
// target speed with current throttle
float target_speed = throttle * max_speed;
// linear acceleration in m/s/s - very crude model
float accel = max_accel * (target_speed - speed) / max_speed;
gyro = Vector3f(0,0,radians(yaw_rate));
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
// accel in body frame due to motor (excluding gravity)
accel_body = Vector3f(accel, 0, 0);
// add in accel due to direction change
accel_body.y += radians(yaw_rate) * speed;
}
/*
update the omni3 rover simulation by one time step
*/
void SimRover::update_omni3(const struct sitl_input &input, float delta_time)
{
// in omni3 mode the first three servos are motor speeds
float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
float motor2 = 2*((input.servos[1]-1000)/1000.0f - 0.5f);
float motor3 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
// use forward kinematics to calculate body frame velocity
Vector3f wheel_ang_vel(
motor1 * omni3_wheel_max_ang_vel,
motor2 * omni3_wheel_max_ang_vel,
motor3 * omni3_wheel_max_ang_vel
);
// derivation of forward kinematics for an Omni3Mecanum rover
// A. Gfrerrer. "Geometry and kinematics of the Mecanum wheel",
// Computer Aided Geometric Design 25 (2008) 784–791.
// Retrieved from https://www.geometrie.tugraz.at/gfrerrer/publications/MecanumWheel.pdf.
//
// the frame is equilateral triangle
//
// d[i] = 0.18 m is distance from frame centre to each wheel
// r_w = 0.04725 m is the wheel radius.
// delta = radians(-45) is angle of the roller to the direction of forward rotation
// alpha[i] is the angle the wheel axis is rotated about the body z-axis
// c[i] = cos(alpha[i] + delta)
// s[i] = sin(alpha[i] + delta)
//
// wheel d[i] alpha[i] a_x[i] a_y[i] c[i] s[i]
// 1 0.18 1.04719 0.09 0.15588 0.965925 0.258819
// 2 0.18 3.14159 -0.18 0.0 -0.707106 0.707106
// 3 0.18 5.23598 0.09 -0.15588 -0.258819 -0.965925
//
// k = 1/(r_w * sin(delta)) = -29.930445 is a scale factor
//
// inverse kinematic matrix
// M[i, 0] = k * c[i]
// M[i, 1] = k * s[i]
// M[i, 2] = k * (a_x[i] s[i] - a_y[i] c[i])
//
// forward kinematics matrix: Minv = M^-1
constexpr Matrix3f Minv(
-0.0215149, 0.01575, 0.0057649,
-0.0057649, -0.01575, 0.0215149,
0.0875, 0.0875, 0.0875);
// twist - this is the target linear and angular velocity
Vector3f twist = Minv * wheel_ang_vel;
// speed in m/s in body frame
Vector3f velocity_body = dcm.transposed() * velocity_ef;
// linear acceleration in m/s/s - very crude model
float accel_x = omni3_max_accel * (twist.x - velocity_body.x) / omni3_max_speed;
float accel_y = omni3_max_accel * (twist.y - velocity_body.y) / omni3_max_speed;
gyro = Vector3f(0, 0, twist.z);
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
// accel in body frame due to motors (excluding gravity)
accel_body = Vector3f(accel_x, accel_y, 0);
}
} // namespace SITL