/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* rover simulator class */ #include "SIM_Rover.h" #include #include #include namespace SITL { SimRover::SimRover(const char *frame_str) : Aircraft(frame_str) { skid_steering = strstr(frame_str, "skid") != nullptr; if (skid_steering) { printf("SKID Steering Rover Simulation Started\n"); // these are taken from a 6V wild thumper with skid steering, // with a sabertooth controller max_accel = 14; max_speed = 4; return; } vectored_thrust = strstr(frame_str, "vector") != nullptr; if (vectored_thrust) { printf("Vectored Thrust Rover Simulation Started\n"); } omni3 = strstr(frame_str, "omni3mecanum") != nullptr; if (omni3) { printf("Omni3 Mecanum Rover Simulation Started\n"); } lock_step_scheduled = true; } /* return turning circle (diameter) in meters for steering angle proportion in degrees */ float SimRover::turn_circle(float steering) const { if (fabsf(steering) < 1.0e-6) { return 0; } return turning_circle * sinf(radians(max_wheel_turn)) / sinf(radians(steering*max_wheel_turn)); } /* return yaw rate in degrees/second given steering_angle and speed */ float SimRover::calc_yaw_rate(float steering, float speed) { if (skid_steering) { return constrain_float(steering * skid_turn_rate, -MAX_YAW_RATE, MAX_YAW_RATE); } if (vectored_thrust) { return constrain_float(steering * vectored_turn_rate_max, -MAX_YAW_RATE, MAX_YAW_RATE); } if (fabsf(steering) < 1.0e-6 or fabsf(speed) < 1.0e-6) { return 0; } float d = turn_circle(steering); float c = M_PI * d; float t = c / speed; float rate = constrain_float(360.0f / t, -MAX_YAW_RATE, MAX_YAW_RATE); return rate; } /* return lateral acceleration in m/s/s */ float SimRover::calc_lat_accel(float steering_angle, float speed) { float yaw_rate = calc_yaw_rate(steering_angle, speed); float accel = radians(yaw_rate) * speed; return accel; } /* update the rover simulation by one time step */ void SimRover::update(const struct sitl_input &input) { // how much time has passed? float delta_time = frame_time_us * 1.0e-6f; // update gyro and accel_body according to frame type if (omni3) { update_omni3(input, delta_time); } else { update_ackermann_or_skid(input, delta_time); } // common to all rovers // now in earth frame Vector3f accel_earth = dcm * accel_body; accel_earth += Vector3f(0, 0, GRAVITY_MSS); // we are on the ground, so our vertical accel is zero accel_earth.z = 0; // work out acceleration as seen by the accelerometers. It sees the kinematic // acceleration (ie. real movement), plus gravity accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS)); // new velocity vector velocity_ef += accel_earth * delta_time; // new position vector position += (velocity_ef * delta_time).todouble(); update_external_payload(input); // update lat/lon/altitude update_position(); time_advance(); // update magnetic field update_mag_field_bf(); } /* update the ackermann or skid rover simulation by one time step */ void SimRover::update_ackermann_or_skid(const struct sitl_input &input, float delta_time) { float steering, throttle; // if in skid steering mode the steering and throttle values are used for motor1 and motor2 if (skid_steering) { float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f); float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f); steering = motor1 - motor2; throttle = 0.5*(motor1 + motor2); } else { steering = 2*((input.servos[0]-1000)/1000.0f - 0.5f); throttle = 2*((input.servos[2]-1000)/1000.0f - 0.5f); // vectored thrust conversion if (vectored_thrust) { const float steering_angle_rad = radians(steering * vectored_angle_max); steering = sinf(steering_angle_rad) * throttle; throttle *= cosf(steering_angle_rad); } } // speed in m/s in body frame Vector3f velocity_body = dcm.transposed() * velocity_ef; // speed along x axis, +ve is forward float speed = velocity_body.x; // yaw rate in degrees/s float yaw_rate = calc_yaw_rate(steering, speed); // target speed with current throttle float target_speed = throttle * max_speed; // linear acceleration in m/s/s - very crude model float accel = max_accel * (target_speed - speed) / max_speed; gyro = Vector3f(0,0,radians(yaw_rate)); // update attitude dcm.rotate(gyro * delta_time); dcm.normalize(); // accel in body frame due to motor (excluding gravity) accel_body = Vector3f(accel, 0, 0); // add in accel due to direction change accel_body.y += radians(yaw_rate) * speed; } /* update the omni3 rover simulation by one time step */ void SimRover::update_omni3(const struct sitl_input &input, float delta_time) { // in omni3 mode the first three servos are motor speeds float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f); float motor2 = 2*((input.servos[1]-1000)/1000.0f - 0.5f); float motor3 = 2*((input.servos[2]-1000)/1000.0f - 0.5f); // use forward kinematics to calculate body frame velocity Vector3f wheel_ang_vel( motor1 * omni3_wheel_max_ang_vel, motor2 * omni3_wheel_max_ang_vel, motor3 * omni3_wheel_max_ang_vel ); // derivation of forward kinematics for an Omni3Mecanum rover // A. Gfrerrer. "Geometry and kinematics of the Mecanum wheel", // Computer Aided Geometric Design 25 (2008) 784–791. // Retrieved from https://www.geometrie.tugraz.at/gfrerrer/publications/MecanumWheel.pdf. // // the frame is equilateral triangle // // d[i] = 0.18 m is distance from frame centre to each wheel // r_w = 0.04725 m is the wheel radius. // delta = radians(-45) is angle of the roller to the direction of forward rotation // alpha[i] is the angle the wheel axis is rotated about the body z-axis // c[i] = cos(alpha[i] + delta) // s[i] = sin(alpha[i] + delta) // // wheel d[i] alpha[i] a_x[i] a_y[i] c[i] s[i] // 1 0.18 1.04719 0.09 0.15588 0.965925 0.258819 // 2 0.18 3.14159 -0.18 0.0 -0.707106 0.707106 // 3 0.18 5.23598 0.09 -0.15588 -0.258819 -0.965925 // // k = 1/(r_w * sin(delta)) = -29.930445 is a scale factor // // inverse kinematic matrix // M[i, 0] = k * c[i] // M[i, 1] = k * s[i] // M[i, 2] = k * (a_x[i] s[i] - a_y[i] c[i]) // // forward kinematics matrix: Minv = M^-1 constexpr Matrix3f Minv( -0.0215149, 0.01575, 0.0057649, -0.0057649, -0.01575, 0.0215149, 0.0875, 0.0875, 0.0875); // twist - this is the target linear and angular velocity Vector3f twist = Minv * wheel_ang_vel; // speed in m/s in body frame Vector3f velocity_body = dcm.transposed() * velocity_ef; // linear acceleration in m/s/s - very crude model float accel_x = omni3_max_accel * (twist.x - velocity_body.x) / omni3_max_speed; float accel_y = omni3_max_accel * (twist.y - velocity_body.y) / omni3_max_speed; gyro = Vector3f(0, 0, twist.z); // update attitude dcm.rotate(gyro * delta_time); dcm.normalize(); // accel in body frame due to motors (excluding gravity) accel_body = Vector3f(accel_x, accel_y, 0); } } // namespace SITL