#include "Copter.h" #include "GCS_Mavlink.h" void Copter::gcs_send_heartbeat(void) { gcs().send_message(MSG_HEARTBEAT); } void Copter::gcs_send_deferred(void) { gcs().retry_deferred(); } /* * !!NOTE!! * * the use of NOINLINE separate functions for each message type avoids * a compiler bug in gcc that would cause it to use far more stack * space than is needed. Without the NOINLINE we use the sum of the * stack needed for each message type. Please be careful to follow the * pattern below when adding any new messages */ MAV_TYPE GCS_MAVLINK_Copter::frame_type() const { return copter.get_frame_mav_type(); } MAV_MODE GCS_MAVLINK_Copter::base_mode() const { uint8_t _base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED; // work out the base_mode. This value is not very useful // for APM, but we calculate it as best we can so a generic // MAVLink enabled ground station can work out something about // what the MAV is up to. The actual bit values are highly // ambiguous for most of the APM flight modes. In practice, you // only get useful information from the custom_mode, which maps to // the APM flight mode and has a well defined meaning in the // ArduPlane documentation switch (copter.control_mode) { case AUTO: case RTL: case LOITER: case AVOID_ADSB: case FOLLOW: case GUIDED: case CIRCLE: case POSHOLD: case BRAKE: case SMART_RTL: _base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED; // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what // APM does in any mode, as that is defined as "system finds its own goal // positions", which APM does not currently do break; default: break; } // all modes except INITIALISING have some form of manual // override if stick mixing is enabled _base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED; #if HIL_MODE != HIL_MODE_DISABLED _base_mode |= MAV_MODE_FLAG_HIL_ENABLED; #endif // we are armed if we are not initialising if (copter.motors != nullptr && copter.motors->armed()) { _base_mode |= MAV_MODE_FLAG_SAFETY_ARMED; } // indicate we have set a custom mode _base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED; return (MAV_MODE)_base_mode; } uint32_t GCS_MAVLINK_Copter::custom_mode() const { return copter.control_mode; } MAV_STATE GCS_MAVLINK_Copter::system_status() const { // set system as critical if any failsafe have triggered if (copter.any_failsafe_triggered()) { return MAV_STATE_CRITICAL; } if (copter.ap.land_complete) { return MAV_STATE_STANDBY; } return MAV_STATE_ACTIVE; } void GCS_MAVLINK_Copter::send_position_target_global_int() { Location_Class target; if (!copter.flightmode->get_wp(target)) { return; } mavlink_msg_position_target_global_int_send( chan, AP_HAL::millis(), // time_boot_ms MAV_FRAME_GLOBAL_INT, // targets are always global altitude 0xFFF8, // ignore everything except the x/y/z components target.lat, // latitude as 1e7 target.lng, // longitude as 1e7 target.alt * 0.01f, // altitude is sent as a float 0.0f, // vx 0.0f, // vy 0.0f, // vz 0.0f, // afx 0.0f, // afy 0.0f, // afz 0.0f, // yaw 0.0f); // yaw_rate } #if AC_FENCE == ENABLED NOINLINE void Copter::send_fence_status(mavlink_channel_t chan) { fence_send_mavlink_status(chan); } #endif NOINLINE void Copter::send_extended_status1(mavlink_channel_t chan) { int16_t battery_current = -1; int8_t battery_remaining = -1; if (battery.has_current() && battery.healthy()) { battery_remaining = battery.capacity_remaining_pct(); battery_current = battery.current_amps() * 100; } update_sensor_status_flags(); mavlink_msg_sys_status_send( chan, control_sensors_present, control_sensors_enabled, control_sensors_health, (uint16_t)(scheduler.load_average() * 1000), battery.voltage() * 1000, // mV battery_current, // in 10mA units battery_remaining, // in % 0, // comm drops %, 0, // comm drops in pkts, 0, 0, 0, 0); } void NOINLINE Copter::send_nav_controller_output(mavlink_channel_t chan) { const Vector3f &targets = attitude_control->get_att_target_euler_cd(); mavlink_msg_nav_controller_output_send( chan, targets.x * 1.0e-2f, targets.y * 1.0e-2f, targets.z * 1.0e-2f, flightmode->wp_bearing() * 1.0e-2f, MIN(flightmode->wp_distance() * 1.0e-2f, UINT16_MAX), pos_control->get_alt_error() * 1.0e-2f, 0, 0); } void NOINLINE Copter::send_vfr_hud(mavlink_channel_t chan) { mavlink_msg_vfr_hud_send( chan, gps.ground_speed(), ahrs.groundspeed(), (ahrs.yaw_sensor / 100) % 360, (int16_t)(motors->get_throttle() * 100), current_loc.alt / 100.0f, climb_rate / 100.0f); } /* send RPM packet */ void NOINLINE Copter::send_rpm(mavlink_channel_t chan) { #if RPM_ENABLED == ENABLED if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) { mavlink_msg_rpm_send( chan, rpm_sensor.get_rpm(0), rpm_sensor.get_rpm(1)); } #endif } /* send PID tuning message */ void Copter::send_pid_tuning(mavlink_channel_t chan) { const Vector3f &gyro = ahrs.get_gyro(); if (g.gcs_pid_mask & 1) { const DataFlash_Class::PID_Info &pid_info = attitude_control->get_rate_roll_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_ROLL, pid_info.desired*0.01f, degrees(gyro.x), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } if (g.gcs_pid_mask & 2) { const DataFlash_Class::PID_Info &pid_info = attitude_control->get_rate_pitch_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_PITCH, pid_info.desired*0.01f, degrees(gyro.y), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } if (g.gcs_pid_mask & 4) { const DataFlash_Class::PID_Info &pid_info = attitude_control->get_rate_yaw_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_YAW, pid_info.desired*0.01f, degrees(gyro.z), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } if (g.gcs_pid_mask & 8) { const DataFlash_Class::PID_Info &pid_info = copter.pos_control->get_accel_z_pid().get_pid_info(); mavlink_msg_pid_tuning_send(chan, PID_TUNING_ACCZ, pid_info.desired*0.01f, -(ahrs.get_accel_ef_blended().z + GRAVITY_MSS), pid_info.FF*0.01f, pid_info.P*0.01f, pid_info.I*0.01f, pid_info.D*0.01f); if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) { return; } } } uint8_t GCS_MAVLINK_Copter::sysid_my_gcs() const { return copter.g.sysid_my_gcs; } uint32_t GCS_MAVLINK_Copter::telem_delay() const { return (uint32_t)(copter.g.telem_delay); } // try to send a message, return false if it wasn't sent bool GCS_MAVLINK_Copter::try_send_message(enum ap_message id) { if (telemetry_delayed()) { return false; } #if HIL_MODE != HIL_MODE_SENSORS // if we don't have at least 250 micros remaining before the main loop // wants to fire then don't send a mavlink message. We want to // prioritise the main flight control loop over communications // the check for nullptr here doesn't just save a nullptr // dereference; it means that we send messages out even if we're // failing to detect a PX4 board type (see delay(3000) in px_drivers). if (copter.motors != nullptr && copter.scheduler.time_available_usec() < 250 && copter.motors->armed()) { gcs().set_out_of_time(true); return false; } #endif switch(id) { case MSG_EXTENDED_STATUS1: // send extended status only once vehicle has been initialised // to avoid unnecessary errors being reported to user if (copter.ap.initialised) { CHECK_PAYLOAD_SIZE(SYS_STATUS); copter.send_extended_status1(chan); CHECK_PAYLOAD_SIZE(POWER_STATUS); send_power_status(); } break; case MSG_NAV_CONTROLLER_OUTPUT: CHECK_PAYLOAD_SIZE(NAV_CONTROLLER_OUTPUT); copter.send_nav_controller_output(chan); break; case MSG_VFR_HUD: CHECK_PAYLOAD_SIZE(VFR_HUD); copter.send_vfr_hud(chan); break; case MSG_RPM: #if RPM_ENABLED == ENABLED CHECK_PAYLOAD_SIZE(RPM); copter.send_rpm(chan); #endif break; case MSG_TERRAIN: #if AP_TERRAIN_AVAILABLE && AC_TERRAIN CHECK_PAYLOAD_SIZE(TERRAIN_REQUEST); copter.terrain.send_request(chan); #endif break; case MSG_FENCE_STATUS: #if AC_FENCE == ENABLED CHECK_PAYLOAD_SIZE(FENCE_STATUS); copter.send_fence_status(chan); #endif break; case MSG_MOUNT_STATUS: #if MOUNT == ENABLED CHECK_PAYLOAD_SIZE(MOUNT_STATUS); copter.camera_mount.status_msg(chan); #endif // MOUNT == ENABLED break; case MSG_OPTICAL_FLOW: #if OPTFLOW == ENABLED CHECK_PAYLOAD_SIZE(OPTICAL_FLOW); send_opticalflow(copter.optflow); #endif break; case MSG_GIMBAL_REPORT: #if MOUNT == ENABLED CHECK_PAYLOAD_SIZE(GIMBAL_REPORT); copter.camera_mount.send_gimbal_report(chan); #endif break; case MSG_EKF_STATUS_REPORT: CHECK_PAYLOAD_SIZE(EKF_STATUS_REPORT); copter.ahrs.send_ekf_status_report(chan); break; case MSG_WIND: case MSG_SERVO_OUT: case MSG_AOA_SSA: case MSG_LANDING: // unused break; case MSG_PID_TUNING: CHECK_PAYLOAD_SIZE(PID_TUNING); copter.send_pid_tuning(chan); break; case MSG_ADSB_VEHICLE: #if ADSB_ENABLED == ENABLED CHECK_PAYLOAD_SIZE(ADSB_VEHICLE); copter.adsb.send_adsb_vehicle(chan); #endif break; default: return GCS_MAVLINK::try_send_message(id); } return true; } const AP_Param::GroupInfo GCS_MAVLINK::var_info[] = { // @Param: RAW_SENS // @DisplayName: Raw sensor stream rate // @Description: Stream rate of RAW_IMU, SCALED_IMU2, SCALED_IMU3, SCALED_PRESSURE, SCALED_PRESSURE2, SCALED_PRESSURE3 and SENSOR_OFFSETS to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK, streamRates[0], 0), // @Param: EXT_STAT // @DisplayName: Extended status stream rate to ground station // @Description: Stream rate of SYS_STATUS, POWER_STATUS, MEMINFO, CURRENT_WAYPOINT, GPS_RAW_INT, GPS_RTK (if available), GPS2_RAW (if available), GPS2_RTK (if available), NAV_CONTROLLER_OUTPUT, and FENCE_STATUS to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK, streamRates[1], 0), // @Param: RC_CHAN // @DisplayName: RC Channel stream rate to ground station // @Description: Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK, streamRates[2], 0), // @Param: RAW_CTRL // @DisplayName: Raw Control stream rate to ground station // @Description: Stream rate of RC_CHANNELS_SCALED (HIL only) to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK, streamRates[3], 0), // @Param: POSITION // @DisplayName: Position stream rate to ground station // @Description: Stream rate of GLOBAL_POSITION_INT and LOCAL_POSITION_NED to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("POSITION", 4, GCS_MAVLINK, streamRates[4], 0), // @Param: EXTRA1 // @DisplayName: Extra data type 1 stream rate to ground station // @Description: Stream rate of ATTITUDE, SIMSTATE (SITL only), AHRS2 and PID_TUNING to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK, streamRates[5], 0), // @Param: EXTRA2 // @DisplayName: Extra data type 2 stream rate to ground station // @Description: Stream rate of VFR_HUD to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK, streamRates[6], 0), // @Param: EXTRA3 // @DisplayName: Extra data type 3 stream rate to ground station // @Description: Stream rate of AHRS, HWSTATUS, SYSTEM_TIME, RANGEFINDER, DISTANCE_SENSOR, TERRAIN_REQUEST, BATTERY2, MOUNT_STATUS, OPTICAL_FLOW, GIMBAL_REPORT, MAG_CAL_REPORT, MAG_CAL_PROGRESS, EKF_STATUS_REPORT, VIBRATION and RPM to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK, streamRates[7], 0), // @Param: PARAMS // @DisplayName: Parameter stream rate to ground station // @Description: Stream rate of PARAM_VALUE to ground station // @Units: Hz // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK, streamRates[8], 0), // @Param: ADSB // @DisplayName: ADSB stream rate to ground station // @Description: ADSB stream rate to ground station // @Units: Hz // @Range: 0 50 // @Increment: 1 // @User: Advanced AP_GROUPINFO("ADSB", 9, GCS_MAVLINK, streamRates[9], 5), AP_GROUPEND }; static const ap_message STREAM_RAW_SENSORS_msgs[] = { MSG_RAW_IMU1, // RAW_IMU, SCALED_IMU2, SCALED_IMU3 MSG_RAW_IMU2, // SCALED_PRESSURE, SCALED_PRESSURE2, SCALED_PRESSURE3 MSG_RAW_IMU3 // SENSOR_OFFSETS }; static const ap_message STREAM_EXTENDED_STATUS_msgs[] = { MSG_EXTENDED_STATUS1, // SYS_STATUS, POWER_STATUS MSG_EXTENDED_STATUS2, // MEMINFO MSG_CURRENT_WAYPOINT, // MISSION_CURRENT MSG_GPS_RAW, MSG_GPS_RTK, MSG_GPS2_RAW, MSG_GPS2_RTK, MSG_NAV_CONTROLLER_OUTPUT, MSG_FENCE_STATUS, MSG_POSITION_TARGET_GLOBAL_INT, }; static const ap_message STREAM_POSITION_msgs[] = { MSG_LOCATION, MSG_LOCAL_POSITION }; static const ap_message STREAM_RAW_CONTROLLER_msgs[] = { }; static const ap_message STREAM_RC_CHANNELS_msgs[] = { MSG_SERVO_OUTPUT_RAW, MSG_RADIO_IN // RC_CHANNELS_RAW, RC_CHANNELS }; static const ap_message STREAM_EXTRA1_msgs[] = { MSG_ATTITUDE, MSG_SIMSTATE, // SIMSTATE, AHRS2 MSG_PID_TUNING // Up to four PID_TUNING messages are sent, depending on GCS_PID_MASK parameter }; static const ap_message STREAM_EXTRA2_msgs[] = { MSG_VFR_HUD }; static const ap_message STREAM_EXTRA3_msgs[] = { MSG_AHRS, MSG_HWSTATUS, MSG_SYSTEM_TIME, MSG_RANGEFINDER, #if AP_TERRAIN_AVAILABLE && AC_TERRAIN MSG_TERRAIN, #endif MSG_BATTERY2, MSG_BATTERY_STATUS, MSG_MOUNT_STATUS, MSG_OPTICAL_FLOW, MSG_GIMBAL_REPORT, MSG_MAG_CAL_REPORT, MSG_MAG_CAL_PROGRESS, MSG_EKF_STATUS_REPORT, MSG_VIBRATION, MSG_RPM }; static const ap_message STREAM_ADSB_msgs[] = { MSG_ADSB_VEHICLE }; const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = { MAV_STREAM_ENTRY(STREAM_RAW_SENSORS), MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS), MAV_STREAM_ENTRY(STREAM_POSITION), // MAV_STREAM_ENTRY(STREAM_RAW_CONTROLLER), MAV_STREAM_ENTRY(STREAM_RC_CHANNELS), MAV_STREAM_ENTRY(STREAM_EXTRA1), MAV_STREAM_ENTRY(STREAM_EXTRA2), MAV_STREAM_ENTRY(STREAM_EXTRA3), MAV_STREAM_ENTRY(STREAM_ADSB), MAV_STREAM_TERMINATOR // must have this at end of stream_entries }; bool GCS_MAVLINK_Copter::handle_guided_request(AP_Mission::Mission_Command &cmd) { #if MODE_AUTO_ENABLED == ENABLED return copter.mode_auto.do_guided(cmd); #else return false; #endif } void GCS_MAVLINK_Copter::handle_change_alt_request(AP_Mission::Mission_Command &cmd) { // add home alt if needed if (cmd.content.location.flags.relative_alt) { cmd.content.location.alt += copter.ahrs.get_home().alt; } // To-Do: update target altitude for loiter or waypoint controller depending upon nav mode } void GCS_MAVLINK_Copter::packetReceived(const mavlink_status_t &status, mavlink_message_t &msg) { #if ADSB_ENABLED == ENABLED if (copter.g2.dev_options.get() & DevOptionADSBMAVLink) { // optional handling of GLOBAL_POSITION_INT as a MAVLink based avoidance source copter.avoidance_adsb.handle_msg(msg); } #endif #if MODE_FOLLOW_ENABLED == ENABLED // pass message to follow library copter.g2.follow.handle_msg(msg); #endif GCS_MAVLINK::packetReceived(status, msg); } bool GCS_MAVLINK_Copter::params_ready() const { if (AP_BoardConfig::in_sensor_config_error()) { // we may never have parameters "initialised" in this case return true; } // if we have not yet initialised (including allocating the motors // object) we drop this request. That prevents the GCS from getting // a confusing parameter count during bootup return copter.ap.initialised_params; } void GCS_MAVLINK_Copter::send_banner() { GCS_MAVLINK::send_banner(); send_text(MAV_SEVERITY_INFO, "Frame: %s", copter.get_frame_string()); } void GCS_MAVLINK_Copter::handle_command_ack(const mavlink_message_t* msg) { copter.command_ack_counter++; GCS_MAVLINK::handle_command_ack(msg); } MAV_RESULT GCS_MAVLINK_Copter::_handle_command_preflight_calibration(const mavlink_command_long_t &packet) { if (is_equal(packet.param6,1.0f)) { // compassmot calibration return copter.mavlink_compassmot(chan); } return GCS_MAVLINK::_handle_command_preflight_calibration(packet); } void GCS_MAVLINK_Copter::handleMessage(mavlink_message_t* msg) { MAV_RESULT result = MAV_RESULT_FAILED; // assume failure. Each messages id is responsible for return ACK or NAK if required switch (msg->msgid) { case MAVLINK_MSG_ID_HEARTBEAT: // MAV ID: 0 { // We keep track of the last time we received a heartbeat from our GCS for failsafe purposes if(msg->sysid != copter.g.sysid_my_gcs) break; copter.failsafe.last_heartbeat_ms = AP_HAL::millis(); break; } case MAVLINK_MSG_ID_PARAM_VALUE: { #if MOUNT == ENABLED copter.camera_mount.handle_param_value(msg); #endif break; } case MAVLINK_MSG_ID_REQUEST_DATA_STREAM: // MAV ID: 66 { handle_request_data_stream(msg, false); break; } case MAVLINK_MSG_ID_GIMBAL_REPORT: { #if MOUNT == ENABLED handle_gimbal_report(copter.camera_mount, msg); #endif break; } case MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: // MAV ID: 70 { // allow override of RC channel values for HIL // or for complete GCS control of switch position // and RC PWM values. if(msg->sysid != copter.g.sysid_my_gcs) break; // Only accept control from our gcs if (!copter.ap.rc_override_enable) { if (copter.failsafe.rc_override_active) { // if overrides were active previously, disable them copter.failsafe.rc_override_active = false; RC_Channels::clear_overrides(); } break; } mavlink_rc_channels_override_t packet; bool override_active = false; mavlink_msg_rc_channels_override_decode(msg, &packet); override_active |= RC_Channels::set_override(0, packet.chan1_raw); override_active |= RC_Channels::set_override(1, packet.chan2_raw); override_active |= RC_Channels::set_override(2, packet.chan3_raw); override_active |= RC_Channels::set_override(3, packet.chan4_raw); override_active |= RC_Channels::set_override(4, packet.chan5_raw); override_active |= RC_Channels::set_override(5, packet.chan6_raw); override_active |= RC_Channels::set_override(6, packet.chan7_raw); override_active |= RC_Channels::set_override(7, packet.chan8_raw); // record that rc are overwritten so we can trigger a failsafe if we lose contact with groundstation copter.failsafe.rc_override_active = override_active; // a RC override message is considered to be a 'heartbeat' from the ground station for failsafe purposes copter.failsafe.last_heartbeat_ms = AP_HAL::millis(); break; } case MAVLINK_MSG_ID_MANUAL_CONTROL: { if (msg->sysid != copter.g.sysid_my_gcs) { break; // only accept control from our gcs } mavlink_manual_control_t packet; mavlink_msg_manual_control_decode(msg, &packet); if (packet.target != copter.g.sysid_this_mav) { break; // only accept control aimed at us } if (packet.z < 0) { // Copter doesn't do negative thrust break; } bool override_active = false; int16_t roll = (packet.y == INT16_MAX) ? 0 : copter.channel_roll->get_radio_min() + (copter.channel_roll->get_radio_max() - copter.channel_roll->get_radio_min()) * (packet.y + 1000) / 2000.0f; int16_t pitch = (packet.x == INT16_MAX) ? 0 : copter.channel_pitch->get_radio_min() + (copter.channel_pitch->get_radio_max() - copter.channel_pitch->get_radio_min()) * (-packet.x + 1000) / 2000.0f; int16_t throttle = (packet.z == INT16_MAX) ? 0 : copter.channel_throttle->get_radio_min() + (copter.channel_throttle->get_radio_max() - copter.channel_throttle->get_radio_min()) * (packet.z) / 1000.0f; int16_t yaw = (packet.r == INT16_MAX) ? 0 : copter.channel_yaw->get_radio_min() + (copter.channel_yaw->get_radio_max() - copter.channel_yaw->get_radio_min()) * (packet.r + 1000) / 2000.0f; override_active |= RC_Channels::set_override(uint8_t(copter.rcmap.roll() - 1), roll); override_active |= RC_Channels::set_override(uint8_t(copter.rcmap.pitch() - 1), pitch); override_active |= RC_Channels::set_override(uint8_t(copter.rcmap.throttle() - 1), throttle); override_active |= RC_Channels::set_override(uint8_t(copter.rcmap.yaw() - 1), yaw); // record that rc are overwritten so we can trigger a failsafe if we lose contact with groundstation copter.failsafe.rc_override_active = override_active; // a manual control message is considered to be a 'heartbeat' from the ground station for failsafe purposes copter.failsafe.last_heartbeat_ms = AP_HAL::millis(); break; } case MAVLINK_MSG_ID_COMMAND_INT: { // decode packet mavlink_command_int_t packet; mavlink_msg_command_int_decode(msg, &packet); switch(packet.command) { case MAV_CMD_DO_FOLLOW: #if MODE_FOLLOW_ENABLED == ENABLED // param1: sysid of target to follow if ((packet.param1 > 0) && (packet.param1 <= 255)) { copter.g2.follow.set_target_sysid((uint8_t)packet.param1); result = MAV_RESULT_ACCEPTED; } #endif break; case MAV_CMD_DO_SET_HOME: { // assume failure result = MAV_RESULT_FAILED; if (is_equal(packet.param1, 1.0f)) { // if param1 is 1, use current location if (copter.set_home_to_current_location(true)) { result = MAV_RESULT_ACCEPTED; } break; } // ensure param1 is zero if (!is_zero(packet.param1)) { break; } // check frame type is supported if (packet.frame != MAV_FRAME_GLOBAL && packet.frame != MAV_FRAME_GLOBAL_INT && packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT && packet.frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) { break; } // sanity check location if (!check_latlng(packet.x, packet.y)) { break; } Location new_home_loc {}; new_home_loc.lat = packet.x; new_home_loc.lng = packet.y; new_home_loc.alt = packet.z * 100; // handle relative altitude if (packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT || packet.frame == MAV_FRAME_GLOBAL_RELATIVE_ALT_INT) { if (!AP::ahrs().home_is_set()) { // cannot use relative altitude if home is not set break; } new_home_loc.alt += copter.ahrs.get_home().alt; } if (copter.set_home(new_home_loc, true)) { result = MAV_RESULT_ACCEPTED; } break; } case MAV_CMD_DO_SET_ROI: { // param1 : /* Region of interest mode (not used)*/ // param2 : /* MISSION index/ target ID (not used)*/ // param3 : /* ROI index (not used)*/ // param4 : /* empty */ // x : lat // y : lon // z : alt // sanity check location if (!check_latlng(packet.x, packet.y)) { break; } Location roi_loc; roi_loc.lat = packet.x; roi_loc.lng = packet.y; roi_loc.alt = (int32_t)(packet.z * 100.0f); copter.flightmode->auto_yaw.set_roi(roi_loc); result = MAV_RESULT_ACCEPTED; break; } default: result = MAV_RESULT_UNSUPPORTED; break; } // send ACK or NAK mavlink_msg_command_ack_send_buf(msg, chan, packet.command, result); break; } // Pre-Flight calibration requests case MAVLINK_MSG_ID_COMMAND_LONG: // MAV ID: 76 { // decode packet mavlink_command_long_t packet; mavlink_msg_command_long_decode(msg, &packet); switch(packet.command) { case MAV_CMD_NAV_TAKEOFF: { // param3 : horizontal navigation by pilot acceptable // param4 : yaw angle (not supported) // param5 : latitude (not supported) // param6 : longitude (not supported) // param7 : altitude [metres] float takeoff_alt = packet.param7 * 100; // Convert m to cm if(copter.do_user_takeoff(takeoff_alt, is_zero(packet.param3))) { result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } break; } case MAV_CMD_NAV_LOITER_UNLIM: if (copter.set_mode(LOITER, MODE_REASON_GCS_COMMAND)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_NAV_RETURN_TO_LAUNCH: if (copter.set_mode(RTL, MODE_REASON_GCS_COMMAND)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_NAV_LAND: if (copter.set_mode(LAND, MODE_REASON_GCS_COMMAND)) { result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_FOLLOW: #if MODE_FOLLOW_ENABLED == ENABLED // param1: sysid of target to follow if ((packet.param1 > 0) && (packet.param1 <= 255)) { copter.g2.follow.set_target_sysid((uint8_t)packet.param1); result = MAV_RESULT_ACCEPTED; } #endif break; case MAV_CMD_CONDITION_YAW: // param1 : target angle [0-360] // param2 : speed during change [deg per second] // param3 : direction (-1:ccw, +1:cw) // param4 : relative offset (1) or absolute angle (0) if ((packet.param1 >= 0.0f) && (packet.param1 <= 360.0f) && (is_zero(packet.param4) || is_equal(packet.param4,1.0f))) { copter.flightmode->auto_yaw.set_fixed_yaw( packet.param1, packet.param2, (int8_t)packet.param3, is_positive(packet.param4)); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } break; case MAV_CMD_DO_CHANGE_SPEED: // param1 : unused // param2 : new speed in m/s // param3 : unused // param4 : unused if (packet.param2 > 0.0f) { copter.wp_nav->set_speed_xy(packet.param2 * 100.0f); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } break; case MAV_CMD_DO_SET_HOME: // param1 : use current (1=use current location, 0=use specified location) // param5 : latitude // param6 : longitude // param7 : altitude (absolute) result = MAV_RESULT_FAILED; // assume failure if (is_equal(packet.param1,1.0f)) { if (copter.set_home_to_current_location(true)) { result = MAV_RESULT_ACCEPTED; } } else { // ensure param1 is zero if (!is_zero(packet.param1)) { break; } // sanity check location if (!check_latlng(packet.param5, packet.param6)) { break; } Location new_home_loc; new_home_loc.lat = (int32_t)(packet.param5 * 1.0e7f); new_home_loc.lng = (int32_t)(packet.param6 * 1.0e7f); new_home_loc.alt = (int32_t)(packet.param7 * 100.0f); if (copter.set_home(new_home_loc, true)) { result = MAV_RESULT_ACCEPTED; } } break; case MAV_CMD_DO_SET_ROI: // param1 : regional of interest mode (not supported) // param2 : mission index/ target id (not supported) // param3 : ROI index (not supported) // param5 : x / lat // param6 : y / lon // param7 : z / alt // sanity check location if (!check_latlng(packet.param5, packet.param6)) { break; } Location roi_loc; roi_loc.lat = (int32_t)(packet.param5 * 1.0e7f); roi_loc.lng = (int32_t)(packet.param6 * 1.0e7f); roi_loc.alt = (int32_t)(packet.param7 * 100.0f); copter.flightmode->auto_yaw.set_roi(roi_loc); result = MAV_RESULT_ACCEPTED; break; case MAV_CMD_DO_MOUNT_CONTROL: #if MOUNT == ENABLED if(!copter.camera_mount.has_pan_control()) { copter.flightmode->auto_yaw.set_fixed_yaw( (float)packet.param3 / 100.0f, 0.0f, 0,0); } copter.camera_mount.control(packet.param1, packet.param2, packet.param3, (MAV_MOUNT_MODE) packet.param7); result = MAV_RESULT_ACCEPTED; #endif break; #if MODE_AUTO_ENABLED == ENABLED case MAV_CMD_MISSION_START: if (copter.motors->armed() && copter.set_mode(AUTO, MODE_REASON_GCS_COMMAND)) { copter.set_auto_armed(true); if (copter.mission.state() != AP_Mission::MISSION_RUNNING) { copter.mission.start_or_resume(); } result = MAV_RESULT_ACCEPTED; } break; #endif case MAV_CMD_COMPONENT_ARM_DISARM: if (is_equal(packet.param1,1.0f)) { // attempt to arm and return success or failure if (copter.init_arm_motors(true)) { result = MAV_RESULT_ACCEPTED; } } else if (is_zero(packet.param1) && (copter.ap.land_complete || is_equal(packet.param2,21196.0f))) { // force disarming by setting param2 = 21196 is deprecated copter.init_disarm_motors(); result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_UNSUPPORTED; } break; case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN: if (is_equal(packet.param1,1.0f) || is_equal(packet.param1,3.0f)) { AP_Notify::flags.firmware_update = 1; copter.notify.update(); hal.scheduler->delay(200); // when packet.param1 == 3 we reboot to hold in bootloader hal.scheduler->reboot(is_equal(packet.param1,3.0f)); result = MAV_RESULT_ACCEPTED; } break; case MAV_CMD_DO_FENCE_ENABLE: #if AC_FENCE == ENABLED result = MAV_RESULT_ACCEPTED; switch ((uint16_t)packet.param1) { case 0: copter.fence.enable(false); break; case 1: copter.fence.enable(true); break; default: result = MAV_RESULT_FAILED; break; } #else // if fence code is not included return failure result = MAV_RESULT_FAILED; #endif break; #if PARACHUTE == ENABLED case MAV_CMD_DO_PARACHUTE: // configure or release parachute result = MAV_RESULT_ACCEPTED; switch ((uint16_t)packet.param1) { case PARACHUTE_DISABLE: copter.parachute.enabled(false); copter.Log_Write_Event(DATA_PARACHUTE_DISABLED); break; case PARACHUTE_ENABLE: copter.parachute.enabled(true); copter.Log_Write_Event(DATA_PARACHUTE_ENABLED); break; case PARACHUTE_RELEASE: // treat as a manual release which performs some additional check of altitude copter.parachute_manual_release(); break; default: result = MAV_RESULT_FAILED; break; } break; #endif case MAV_CMD_DO_MOTOR_TEST: // param1 : motor sequence number (a number from 1 to max number of motors on the vehicle) // param2 : throttle type (0=throttle percentage, 1=PWM, 2=pilot throttle channel pass-through. See MOTOR_TEST_THROTTLE_TYPE enum) // param3 : throttle (range depends upon param2) // param4 : timeout (in seconds) // param5 : num_motors (in sequence) // param6 : compass learning (0: disabled, 1: enabled) result = copter.mavlink_motor_test_start(chan, (uint8_t)packet.param1, (uint8_t)packet.param2, (uint16_t)packet.param3, packet.param4, (uint8_t)packet.param5); break; #if GRIPPER_ENABLED == ENABLED case MAV_CMD_DO_GRIPPER: // param1 : gripper number (ignored) // param2 : action (0=release, 1=grab). See GRIPPER_ACTIONS enum. if(!copter.g2.gripper.enabled()) { result = MAV_RESULT_FAILED; } else { result = MAV_RESULT_ACCEPTED; switch ((uint8_t)packet.param2) { case GRIPPER_ACTION_RELEASE: copter.g2.gripper.release(); break; case GRIPPER_ACTION_GRAB: copter.g2.gripper.grab(); break; default: result = MAV_RESULT_FAILED; break; } } break; #endif #if WINCH_ENABLED == ENABLED case MAV_CMD_DO_WINCH: // param1 : winch number (ignored) // param2 : action (0=relax, 1=relative length control, 2=rate control). See WINCH_ACTIONS enum. if (!copter.g2.winch.enabled()) { result = MAV_RESULT_FAILED; } else { result = MAV_RESULT_ACCEPTED; switch ((uint8_t)packet.param2) { case WINCH_RELAXED: copter.g2.winch.relax(); copter.Log_Write_Event(DATA_WINCH_RELAXED); break; case WINCH_RELATIVE_LENGTH_CONTROL: { copter.g2.winch.release_length(packet.param3, fabsf(packet.param4)); copter.Log_Write_Event(DATA_WINCH_LENGTH_CONTROL); break; } case WINCH_RATE_CONTROL: { if (fabsf(packet.param4) <= copter.g2.winch.get_rate_max()) { copter.g2.winch.set_desired_rate(packet.param4); copter.Log_Write_Event(DATA_WINCH_RATE_CONTROL); } else { result = MAV_RESULT_FAILED; } break; } default: result = MAV_RESULT_FAILED; break; } } break; #endif /* Solo user presses Fly button */ case MAV_CMD_SOLO_BTN_FLY_CLICK: { result = MAV_RESULT_ACCEPTED; if (copter.failsafe.radio) { break; } // set mode to Loiter or fall back to AltHold if (!copter.set_mode(LOITER, MODE_REASON_GCS_COMMAND)) { copter.set_mode(ALT_HOLD, MODE_REASON_GCS_COMMAND); } break; } /* Solo user holds down Fly button for a couple of seconds */ case MAV_CMD_SOLO_BTN_FLY_HOLD: { result = MAV_RESULT_ACCEPTED; if (copter.failsafe.radio) { break; } if (!copter.motors->armed()) { // if disarmed, arm motors copter.init_arm_motors(true); } else if (copter.ap.land_complete) { // if armed and landed, takeoff if (copter.set_mode(LOITER, MODE_REASON_GCS_COMMAND)) { copter.do_user_takeoff(packet.param1*100, true); } } else { // if flying, land copter.set_mode(LAND, MODE_REASON_GCS_COMMAND); } break; } /* Solo user presses pause button */ case MAV_CMD_SOLO_BTN_PAUSE_CLICK: { result = MAV_RESULT_ACCEPTED; if (copter.failsafe.radio) { break; } if (copter.motors->armed()) { if (copter.ap.land_complete) { // if landed, disarm motors copter.init_disarm_motors(); } else { // assume that shots modes are all done in guided. // NOTE: this may need to change if we add a non-guided shot mode bool shot_mode = (!is_zero(packet.param1) && (copter.control_mode == GUIDED || copter.control_mode == GUIDED_NOGPS)); if (!shot_mode) { #if MODE_BRAKE_ENABLED == ENABLED if (copter.set_mode(BRAKE, MODE_REASON_GCS_COMMAND)) { copter.mode_brake.timeout_to_loiter_ms(2500); } else { copter.set_mode(ALT_HOLD, MODE_REASON_GCS_COMMAND); } #else copter.set_mode(ALT_HOLD, MODE_REASON_GCS_COMMAND); #endif } else { // SoloLink is expected to handle pause in shots } } } break; } case MAV_CMD_ACCELCAL_VEHICLE_POS: result = MAV_RESULT_FAILED; if (copter.ins.get_acal()->gcs_vehicle_position(packet.param1)) { result = MAV_RESULT_ACCEPTED; } break; default: result = handle_command_long_message(packet); break; } // send ACK or NAK mavlink_msg_command_ack_send_buf(msg, chan, packet.command, result); break; } #if MODE_GUIDED_ENABLED == ENABLED case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: // MAV ID: 82 { // decode packet mavlink_set_attitude_target_t packet; mavlink_msg_set_attitude_target_decode(msg, &packet); // exit if vehicle is not in Guided mode or Auto-Guided mode if (!copter.flightmode->in_guided_mode()) { break; } // ensure type_mask specifies to use attitude and thrust if ((packet.type_mask & ((1<<7)|(1<<6))) != 0) { break; } // convert thrust to climb rate packet.thrust = constrain_float(packet.thrust, 0.0f, 1.0f); float climb_rate_cms = 0.0f; if (is_equal(packet.thrust, 0.5f)) { climb_rate_cms = 0.0f; } else if (packet.thrust > 0.5f) { // climb at up to WPNAV_SPEED_UP climb_rate_cms = (packet.thrust - 0.5f) * 2.0f * copter.wp_nav->get_speed_up(); } else { // descend at up to WPNAV_SPEED_DN climb_rate_cms = (0.5f - packet.thrust) * 2.0f * -fabsf(copter.wp_nav->get_speed_down()); } // if the body_yaw_rate field is ignored, use the commanded yaw position // otherwise use the commanded yaw rate bool use_yaw_rate = false; if ((packet.type_mask & (1<<2)) == 0) { use_yaw_rate = true; } copter.mode_guided.set_angle(Quaternion(packet.q[0],packet.q[1],packet.q[2],packet.q[3]), climb_rate_cms, use_yaw_rate, packet.body_yaw_rate); break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: // MAV ID: 84 { // decode packet mavlink_set_position_target_local_ned_t packet; mavlink_msg_set_position_target_local_ned_decode(msg, &packet); // exit if vehicle is not in Guided mode or Auto-Guided mode if (!copter.flightmode->in_guided_mode()) { break; } // check for supported coordinate frames if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED && packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED && packet.coordinate_frame != MAV_FRAME_BODY_NED && packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) { break; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; /* * for future use: * bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE; */ // prepare position Vector3f pos_vector; if (!pos_ignore) { // convert to cm pos_vector = Vector3f(packet.x * 100.0f, packet.y * 100.0f, -packet.z * 100.0f); // rotate to body-frame if necessary if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { copter.rotate_body_frame_to_NE(pos_vector.x, pos_vector.y); } // add body offset if necessary if (packet.coordinate_frame == MAV_FRAME_LOCAL_OFFSET_NED || packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { pos_vector += copter.inertial_nav.get_position(); } else { // convert from alt-above-home to alt-above-ekf-origin pos_vector.z = copter.pv_alt_above_origin(pos_vector.z); } } // prepare velocity Vector3f vel_vector; if (!vel_ignore) { // convert to cm vel_vector = Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f); // rotate to body-frame if necessary if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) { copter.rotate_body_frame_to_NE(vel_vector.x, vel_vector.y); } } // prepare yaw float yaw_cd = 0.0f; bool yaw_relative = false; float yaw_rate_cds = 0.0f; if (!yaw_ignore) { yaw_cd = ToDeg(packet.yaw) * 100.0f; yaw_relative = packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED; } if (!yaw_rate_ignore) { yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f; } // send request if (!pos_ignore && !vel_ignore && acc_ignore) { if (copter.mode_guided.set_destination_posvel(pos_vector, vel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative)) { result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else if (pos_ignore && !vel_ignore && acc_ignore) { copter.mode_guided.set_velocity(vel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative); result = MAV_RESULT_ACCEPTED; } else if (!pos_ignore && vel_ignore && acc_ignore) { if (copter.mode_guided.set_destination(pos_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative)) { result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else { result = MAV_RESULT_FAILED; } break; } case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: // MAV ID: 86 { // decode packet mavlink_set_position_target_global_int_t packet; mavlink_msg_set_position_target_global_int_decode(msg, &packet); // exit if vehicle is not in Guided mode or Auto-Guided mode if (!copter.flightmode->in_guided_mode()) { break; } // check for supported coordinate frames if (packet.coordinate_frame != MAV_FRAME_GLOBAL && packet.coordinate_frame != MAV_FRAME_GLOBAL_INT && packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT && // solo shot manager incorrectly sends RELATIVE_ALT instead of RELATIVE_ALT_INT packet.coordinate_frame != MAV_FRAME_GLOBAL_RELATIVE_ALT_INT && packet.coordinate_frame != MAV_FRAME_GLOBAL_TERRAIN_ALT && packet.coordinate_frame != MAV_FRAME_GLOBAL_TERRAIN_ALT_INT) { break; } bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE; bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE; bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE; bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE; bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE; /* * for future use: * bool force = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_FORCE; */ Vector3f pos_neu_cm; // position (North, East, Up coordinates) in centimeters if(!pos_ignore) { // sanity check location if (!check_latlng(packet.lat_int, packet.lon_int)) { result = MAV_RESULT_FAILED; break; } Location loc; loc.lat = packet.lat_int; loc.lng = packet.lon_int; loc.alt = packet.alt*100; switch (packet.coordinate_frame) { case MAV_FRAME_GLOBAL_RELATIVE_ALT: // solo shot manager incorrectly sends RELATIVE_ALT instead of RELATIVE_ALT_INT case MAV_FRAME_GLOBAL_RELATIVE_ALT_INT: loc.flags.relative_alt = true; loc.flags.terrain_alt = false; break; case MAV_FRAME_GLOBAL_TERRAIN_ALT: case MAV_FRAME_GLOBAL_TERRAIN_ALT_INT: loc.flags.relative_alt = true; loc.flags.terrain_alt = true; break; case MAV_FRAME_GLOBAL: case MAV_FRAME_GLOBAL_INT: default: // pv_location_to_vector does not support absolute altitudes. // Convert the absolute altitude to a home-relative altitude before calling pv_location_to_vector loc.alt -= copter.ahrs.get_home().alt; loc.flags.relative_alt = true; loc.flags.terrain_alt = false; break; } pos_neu_cm = copter.pv_location_to_vector(loc); } // prepare yaw float yaw_cd = 0.0f; bool yaw_relative = false; float yaw_rate_cds = 0.0f; if (!yaw_ignore) { yaw_cd = ToDeg(packet.yaw) * 100.0f; yaw_relative = packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED; } if (!yaw_rate_ignore) { yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f; } if (!pos_ignore && !vel_ignore && acc_ignore) { if (copter.mode_guided.set_destination_posvel(pos_neu_cm, Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f), !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative)) { result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else if (pos_ignore && !vel_ignore && acc_ignore) { copter.mode_guided.set_velocity(Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f), !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative); result = MAV_RESULT_ACCEPTED; } else if (!pos_ignore && vel_ignore && acc_ignore) { if (copter.mode_guided.set_destination(pos_neu_cm, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative)) { result = MAV_RESULT_ACCEPTED; } else { result = MAV_RESULT_FAILED; } } else { result = MAV_RESULT_FAILED; } break; } #endif case MAVLINK_MSG_ID_DISTANCE_SENSOR: { result = MAV_RESULT_ACCEPTED; copter.rangefinder.handle_msg(msg); #if PROXIMITY_ENABLED == ENABLED copter.g2.proximity.handle_msg(msg); #endif break; } #if HIL_MODE != HIL_MODE_DISABLED case MAVLINK_MSG_ID_HIL_STATE: // MAV ID: 90 { mavlink_hil_state_t packet; mavlink_msg_hil_state_decode(msg, &packet); // sanity check location if (!check_latlng(packet.lat, packet.lon)) { break; } // set gps hil sensor Location loc; loc.lat = packet.lat; loc.lng = packet.lon; loc.alt = packet.alt/10; Vector3f vel(packet.vx, packet.vy, packet.vz); vel *= 0.01f; gps.setHIL(0, AP_GPS::GPS_OK_FIX_3D, packet.time_usec/1000, loc, vel, 10, 0); // rad/sec Vector3f gyros; gyros.x = packet.rollspeed; gyros.y = packet.pitchspeed; gyros.z = packet.yawspeed; // m/s/s Vector3f accels; accels.x = packet.xacc * (GRAVITY_MSS/1000.0f); accels.y = packet.yacc * (GRAVITY_MSS/1000.0f); accels.z = packet.zacc * (GRAVITY_MSS/1000.0f); ins.set_gyro(0, gyros); ins.set_accel(0, accels); AP::baro().setHIL(packet.alt*0.001f); copter.compass.setHIL(0, packet.roll, packet.pitch, packet.yaw); copter.compass.setHIL(1, packet.roll, packet.pitch, packet.yaw); break; } #endif // HIL_MODE != HIL_MODE_DISABLED case MAVLINK_MSG_ID_RADIO: case MAVLINK_MSG_ID_RADIO_STATUS: // MAV ID: 109 { handle_radio_status(msg, copter.DataFlash, copter.should_log(MASK_LOG_PM)); break; } #if PRECISION_LANDING == ENABLED case MAVLINK_MSG_ID_LANDING_TARGET: result = MAV_RESULT_ACCEPTED; copter.precland.handle_msg(msg); break; #endif #if AC_FENCE == ENABLED // send or receive fence points with GCS case MAVLINK_MSG_ID_FENCE_POINT: // MAV ID: 160 case MAVLINK_MSG_ID_FENCE_FETCH_POINT: copter.fence.handle_msg(*this, msg); break; #endif // AC_FENCE == ENABLED #if MOUNT == ENABLED //deprecated. Use MAV_CMD_DO_MOUNT_CONFIGURE case MAVLINK_MSG_ID_MOUNT_CONFIGURE: // MAV ID: 204 copter.camera_mount.configure_msg(msg); break; //deprecated. Use MAV_CMD_DO_MOUNT_CONTROL case MAVLINK_MSG_ID_MOUNT_CONTROL: if(!copter.camera_mount.has_pan_control()) { copter.flightmode->auto_yaw.set_fixed_yaw( mavlink_msg_mount_control_get_input_c(msg)/100.0f, 0.0f, 0, 0); } copter.camera_mount.control_msg(msg); break; #endif // MOUNT == ENABLED case MAVLINK_MSG_ID_TERRAIN_DATA: case MAVLINK_MSG_ID_TERRAIN_CHECK: #if AP_TERRAIN_AVAILABLE && AC_TERRAIN copter.terrain.handle_data(chan, msg); #endif break; case MAVLINK_MSG_ID_SET_HOME_POSITION: { mavlink_set_home_position_t packet; mavlink_msg_set_home_position_decode(msg, &packet); if((packet.latitude == 0) && (packet.longitude == 0) && (packet.altitude == 0)) { copter.set_home_to_current_location(true); } else { // sanity check location if (!check_latlng(packet.latitude, packet.longitude)) { break; } Location new_home_loc; new_home_loc.lat = packet.latitude; new_home_loc.lng = packet.longitude; new_home_loc.alt = packet.altitude / 10; copter.set_home(new_home_loc, true); } break; } case MAVLINK_MSG_ID_ADSB_VEHICLE: case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_CFG: case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_DYNAMIC: case MAVLINK_MSG_ID_UAVIONIX_ADSB_TRANSCEIVER_HEALTH_REPORT: #if ADSB_ENABLED == ENABLED copter.adsb.handle_message(chan, msg); #endif break; #if TOY_MODE_ENABLED == ENABLED case MAVLINK_MSG_ID_NAMED_VALUE_INT: copter.g2.toy_mode.handle_message(msg); break; #endif default: handle_common_message(msg); break; } // end switch } // end handle mavlink /* * a delay() callback that processes MAVLink packets. We set this as the * callback in long running library initialisation routines to allow * MAVLink to process packets while waiting for the initialisation to * complete */ void Copter::mavlink_delay_cb() { static uint32_t last_1hz, last_50hz, last_5s; if (!gcs().chan(0).initialised) return; DataFlash.EnableWrites(false); uint32_t tnow = millis(); if (tnow - last_1hz > 1000) { last_1hz = tnow; gcs_send_heartbeat(); gcs().send_message(MSG_EXTENDED_STATUS1); } if (tnow - last_50hz > 20) { last_50hz = tnow; gcs_check_input(); gcs_data_stream_send(); gcs_send_deferred(); notify.update(); } if (tnow - last_5s > 5000) { last_5s = tnow; gcs().send_text(MAV_SEVERITY_INFO, "Initialising APM"); } check_usb_mux(); DataFlash.EnableWrites(true); } /* * send data streams in the given rate range on both links */ void Copter::gcs_data_stream_send(void) { gcs().data_stream_send(); } /* * look for incoming commands on the GCS links */ void Copter::gcs_check_input(void) { gcs().update(); } /* return true if we will accept this packet. Used to implement SYSID_ENFORCE */ bool GCS_MAVLINK_Copter::accept_packet(const mavlink_status_t &status, mavlink_message_t &msg) { if (!copter.g2.sysid_enforce) { return true; } if (msg.msgid == MAVLINK_MSG_ID_RADIO || msg.msgid == MAVLINK_MSG_ID_RADIO_STATUS) { return true; } return (msg.sysid == copter.g.sysid_my_gcs); } AP_Mission *GCS_MAVLINK_Copter::get_mission() { #if MODE_AUTO_ENABLED == ENABLED return &copter.mission; #else return nullptr; #endif } Compass *GCS_MAVLINK_Copter::get_compass() const { return &copter.compass; } AP_Camera *GCS_MAVLINK_Copter::get_camera() const { #if CAMERA == ENABLED return &copter.camera; #else return nullptr; #endif } AP_AdvancedFailsafe *GCS_MAVLINK_Copter::get_advanced_failsafe() const { #if ADVANCED_FAILSAFE == ENABLED return &copter.g2.afs; #else return nullptr; #endif } AP_VisualOdom *GCS_MAVLINK_Copter::get_visual_odom() const { #if VISUAL_ODOMETRY_ENABLED == ENABLED return &copter.g2.visual_odom; #else return nullptr; #endif } MAV_RESULT GCS_MAVLINK_Copter::handle_flight_termination(const mavlink_command_long_t &packet) { MAV_RESULT result = MAV_RESULT_FAILED; #if ADVANCED_FAILSAFE == ENABLED if (GCS_MAVLINK::handle_flight_termination(packet) != MAV_RESULT_ACCEPTED) { #endif if (packet.param1 > 0.5f) { copter.init_disarm_motors(); result = MAV_RESULT_ACCEPTED; } #if ADVANCED_FAILSAFE == ENABLED } else { result = MAV_RESULT_ACCEPTED; } #endif return result; } AP_Rally *GCS_MAVLINK_Copter::get_rally() const { #if AC_RALLY == ENABLED return &copter.rally; #else return nullptr; #endif } bool GCS_MAVLINK_Copter::set_mode(const uint8_t mode) { #ifdef DISALLOW_GCS_MODE_CHANGE_DURING_RC_FAILSAFE if (copter.failsafe.radio) { // don't allow mode changes while in radio failsafe return false; } #endif return copter.set_mode((control_mode_t)mode, MODE_REASON_GCS_COMMAND); } const AP_FWVersion &GCS_MAVLINK_Copter::get_fwver() const { return copter.fwver; }