/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#pragma once
/*
This is the main Copter class
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
#include
#include
#include
#include
// Common dependencies
#include
#include
#include
#include
// Application dependencies
#include
#include // Serial manager library
#include // ArduPilot GPS library
#include // ArduPilot Mega Flash Memory Library
#include
#include // ArduPilot Mega Magnetometer Library
#include // ArduPilot Mega Vector/Matrix math Library
#include // interface and maths for accelerometer calibration
#include // ArduPilot Mega Inertial Sensor (accel & gyro) Library
#include
#include
#include
#include // Mission command library
#include // P library
#include // PID library
#include // PI library (2-axis)
#include // PID library (2-axis)
#include // Heli specific Rate PID library
#include // Attitude control library
#include // Attitude control library for traditional helicopter
#include // Position control library
#include // RC Channel Library
#include // AP Motors library
#include // statistics library
#include // RSSI Library
#include // Filter library
#include // APM FIFO Buffer
#include // APM relay
#include
#include // needed for AHRS build
#include // needed for AHRS build
#include // ArduPilot Mega inertial navigation library
#include // ArduCopter waypoint navigation library
#include
#include // circle navigation library
#include // ArduPilot Mega Declination Helper Library
#include // main loop scheduler
#include // RC input mapping library
#include // Notify library
#include // Battery monitor library
#include // board configuration library
#include
#include // Landing Gear library
#include // Pilot input handling library
#include // Heli specific pilot input handling library
#include
#include
#include
#include
// Configuration
#include "defines.h"
#include "config.h"
#include "GCS_Mavlink.h"
#include "GCS_Copter.h"
#include "AP_Rally.h" // Rally point library
#include "AP_Arming.h"
// libraries which are dependent on #defines in defines.h and/or config.h
#if BEACON_ENABLED == ENABLED
#include
#endif
#if AC_AVOID_ENABLED == ENABLED
#include
#endif
#if SPRAYER_ENABLED == ENABLED
# include
#endif
#if GRIPPER_ENABLED == ENABLED
# include
#endif
#if PARACHUTE == ENABLED
# include
#endif
#if PRECISION_LANDING == ENABLED
# include
# include
#endif
#if FRSKY_TELEM_ENABLED == ENABLED
# include
#endif
#if ADSB_ENABLED == ENABLED
# include
#endif
#if MODE_FOLLOW_ENABLED == ENABLED
# include
#endif
#if AC_FENCE == ENABLED
# include
#endif
#if AC_TERRAIN == ENABLED
# include
#endif
#if OPTFLOW == ENABLED
# include
#endif
#if VISUAL_ODOMETRY_ENABLED == ENABLED
# include
#endif
#if RANGEFINDER_ENABLED == ENABLED
# include
#endif
#if PROXIMITY_ENABLED == ENABLED
# include
#endif
#if MOUNT == ENABLED
#include
#endif
#if CAMERA == ENABLED
# include
#endif
#if DEVO_TELEM_ENABLED == ENABLED
#include
#endif
#if OSD_ENABLED == ENABLED
#include
#endif
#if ADVANCED_FAILSAFE == ENABLED
# include "afs_copter.h"
#endif
#if TOY_MODE_ENABLED == ENABLED
# include "toy_mode.h"
#endif
#if WINCH_ENABLED == ENABLED
# include
# include
#endif
#if RPM_ENABLED == ENABLED
#include
#endif
// Local modules
#include "Parameters.h"
#if ADSB_ENABLED == ENABLED
#include "avoidance_adsb.h"
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include
#endif
class Copter : public AP_HAL::HAL::Callbacks {
public:
friend class GCS_MAVLINK_Copter;
friend class GCS_Copter;
friend class AP_Rally_Copter;
friend class Parameters;
friend class ParametersG2;
friend class AP_Avoidance_Copter;
#if ADVANCED_FAILSAFE == ENABLED
friend class AP_AdvancedFailsafe_Copter;
#endif
friend class AP_Arming_Copter;
friend class ToyMode;
Copter(void);
// HAL::Callbacks implementation.
void setup() override;
void loop() override;
private:
static const AP_FWVersion fwver;
// key aircraft parameters passed to multiple libraries
AP_Vehicle::MultiCopter aparm;
// Global parameters are all contained within the 'g' class.
Parameters g;
ParametersG2 g2;
// main loop scheduler
AP_Scheduler scheduler{FUNCTOR_BIND_MEMBER(&Copter::fast_loop, void)};
// AP_Notify instance
AP_Notify notify;
// used to detect MAVLink acks from GCS to stop compassmot
uint8_t command_ack_counter;
// primary input control channels
RC_Channel *channel_roll;
RC_Channel *channel_pitch;
RC_Channel *channel_throttle;
RC_Channel *channel_yaw;
// Dataflash
DataFlash_Class DataFlash;
AP_GPS gps;
// flight modes convenience array
AP_Int8 *flight_modes;
AP_Baro barometer;
Compass compass;
AP_InertialSensor ins;
RangeFinder rangefinder{serial_manager, ROTATION_PITCH_270};
struct {
bool enabled:1;
bool alt_healthy:1; // true if we can trust the altitude from the rangefinder
int16_t alt_cm; // tilt compensated altitude (in cm) from rangefinder
uint32_t last_healthy_ms;
LowPassFilterFloat alt_cm_filt; // altitude filter
int8_t glitch_count;
} rangefinder_state = { false, false, 0, 0 };
#if RPM_ENABLED == ENABLED
AP_RPM rpm_sensor;
#endif
// Inertial Navigation EKF
NavEKF2 EKF2{&ahrs, rangefinder};
NavEKF3 EKF3{&ahrs, rangefinder};
AP_AHRS_NavEKF ahrs{EKF2, EKF3, AP_AHRS_NavEKF::FLAG_ALWAYS_USE_EKF};
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
SITL::SITL sitl;
#endif
// Mission library
#if MODE_AUTO_ENABLED == ENABLED
AP_Mission mission{ahrs,
FUNCTOR_BIND_MEMBER(&Copter::start_command, bool, const AP_Mission::Mission_Command &),
FUNCTOR_BIND_MEMBER(&Copter::verify_command_callback, bool, const AP_Mission::Mission_Command &),
FUNCTOR_BIND_MEMBER(&Copter::exit_mission, void)};
bool start_command(const AP_Mission::Mission_Command& cmd) {
return mode_auto.start_command(cmd);
}
bool verify_command_callback(const AP_Mission::Mission_Command& cmd) {
return mode_auto.verify_command_callback(cmd);
}
void exit_mission() {
mode_auto.exit_mission();
}
#endif
// Arming/Disarming mangement class
AP_Arming_Copter arming;
// Optical flow sensor
#if OPTFLOW == ENABLED
OpticalFlow optflow{ahrs};
#endif
// gnd speed limit required to observe optical flow sensor limits
float ekfGndSpdLimit;
// scale factor applied to velocity controller gain to prevent optical flow noise causing excessive angle demand noise
float ekfNavVelGainScaler;
// system time in milliseconds of last recorded yaw reset from ekf
uint32_t ekfYawReset_ms;
int8_t ekf_primary_core;
AP_SerialManager serial_manager;
// GCS selection
GCS_Copter _gcs; // avoid using this; use gcs()
GCS_Copter &gcs() { return _gcs; }
// User variables
#ifdef USERHOOK_VARIABLES
# include USERHOOK_VARIABLES
#endif
// Documentation of GLobals:
typedef union {
struct {
uint8_t unused1 : 1; // 0
uint8_t simple_mode : 2; // 1,2 // This is the state of simple mode : 0 = disabled ; 1 = SIMPLE ; 2 = SUPERSIMPLE
uint8_t pre_arm_rc_check : 1; // 3 // true if rc input pre-arm checks have been completed successfully
uint8_t pre_arm_check : 1; // 4 // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed
uint8_t auto_armed : 1; // 5 // stops auto missions from beginning until throttle is raised
uint8_t logging_started : 1; // 6 // true if dataflash logging has started
uint8_t land_complete : 1; // 7 // true if we have detected a landing
uint8_t new_radio_frame : 1; // 8 // Set true if we have new PWM data to act on from the Radio
uint8_t usb_connected_unused : 1; // 9 // UNUSED
uint8_t rc_receiver_present : 1; // 10 // true if we have an rc receiver present (i.e. if we've ever received an update
uint8_t compass_mot : 1; // 11 // true if we are currently performing compassmot calibration
uint8_t motor_test : 1; // 12 // true if we are currently performing the motors test
uint8_t initialised : 1; // 13 // true once the init_ardupilot function has completed. Extended status to GCS is not sent until this completes
uint8_t land_complete_maybe : 1; // 14 // true if we may have landed (less strict version of land_complete)
uint8_t throttle_zero : 1; // 15 // true if the throttle stick is at zero, debounced, determines if pilot intends shut-down when not using motor interlock
uint8_t system_time_set_unused : 1; // 16 // true if the system time has been set from the GPS
uint8_t gps_glitching : 1; // 17 // true if GPS glitching is affecting navigation accuracy
uint8_t using_interlock : 1; // 20 // aux switch motor interlock function is in use
uint8_t motor_emergency_stop : 1; // 21 // motor estop switch, shuts off motors when enabled
uint8_t land_repo_active : 1; // 22 // true if the pilot is overriding the landing position
uint8_t motor_interlock_switch : 1; // 23 // true if pilot is requesting motor interlock enable
uint8_t in_arming_delay : 1; // 24 // true while we are armed but waiting to spin motors
uint8_t initialised_params : 1; // 25 // true when the all parameters have been initialised. we cannot send parameters to the GCS until this is done
uint8_t compass_init_location : 1; // 26 // true when the compass's initial location has been set
uint8_t rc_override_enable : 1; // 27 // aux switch rc_override is allowed
uint8_t armed_with_switch : 1; // 28 // we armed using a arming switch
};
uint32_t value;
} ap_t;
ap_t ap;
static_assert(sizeof(uint32_t) == sizeof(ap), "ap_t must be uint32_t");
// This is the state of the flight control system
// There are multiple states defined such as STABILIZE, ACRO,
control_mode_t control_mode;
mode_reason_t control_mode_reason = MODE_REASON_UNKNOWN;
control_mode_t prev_control_mode;
mode_reason_t prev_control_mode_reason = MODE_REASON_UNKNOWN;
// Structure used to detect changes in the flight mode control switch
struct {
int8_t debounced_switch_position; // currently used switch position
int8_t last_switch_position; // switch position in previous iteration
uint32_t last_edge_time_ms; // system time that switch position was last changed
} control_switch_state;
// de-bounce counters for switches.cpp
struct debounce {
uint8_t count;
uint8_t ch_flag;
} aux_debounce[(CH_12 - CH_7)+1];
// altitude below which we do no navigation in auto takeoff
float auto_takeoff_no_nav_alt_cm;
RCMapper rcmap;
// intertial nav alt when we armed
float arming_altitude_m;
// board specific config
AP_BoardConfig BoardConfig;
#if HAL_WITH_UAVCAN
// board specific config for CAN bus
AP_BoardConfig_CAN BoardConfig_CAN;
#endif
// Failsafe
struct {
uint32_t last_heartbeat_ms; // the time when the last HEARTBEAT message arrived from a GCS - used for triggering gcs failsafe
uint32_t terrain_first_failure_ms; // the first time terrain data access failed - used to calculate the duration of the failure
uint32_t terrain_last_failure_ms; // the most recent time terrain data access failed
int8_t radio_counter; // number of iterations with throttle below throttle_fs_value
uint8_t rc_override_active : 1; // true if rc control are overwritten by ground station
uint8_t radio : 1; // A status flag for the radio failsafe
uint8_t gcs : 1; // A status flag for the ground station failsafe
uint8_t ekf : 1; // true if ekf failsafe has occurred
uint8_t terrain : 1; // true if the missing terrain data failsafe has occurred
uint8_t adsb : 1; // true if an adsb related failsafe has occurred
} failsafe;
bool any_failsafe_triggered() const {
return failsafe.radio || battery.has_failsafed() || failsafe.gcs || failsafe.ekf || failsafe.terrain || failsafe.adsb;
}
// sensor health for logging
struct {
uint8_t baro : 1; // true if baro is healthy
uint8_t compass : 1; // true if compass is healthy
uint8_t primary_gps : 2; // primary gps index
} sensor_health;
// Motor Output
#if FRAME_CONFIG == HELI_FRAME
#define MOTOR_CLASS AP_MotorsHeli
#else
#define MOTOR_CLASS AP_MotorsMulticopter
#endif
MOTOR_CLASS *motors;
const struct AP_Param::GroupInfo *motors_var_info;
// GPS variables
// Sometimes we need to remove the scaling for distance calcs
float scaleLongDown;
int32_t _home_bearing;
uint32_t _home_distance;
// SIMPLE Mode
// Used to track the orientation of the vehicle for Simple mode. This value is reset at each arming
// or in SuperSimple mode when the vehicle leaves a 20m radius from home.
float simple_cos_yaw;
float simple_sin_yaw;
int32_t super_simple_last_bearing;
float super_simple_cos_yaw;
float super_simple_sin_yaw;
// Stores initial bearing when armed - initial simple bearing is modified in super simple mode so not suitable
int32_t initial_armed_bearing;
// Battery Sensors
AP_BattMonitor battery{MASK_LOG_CURRENT,
FUNCTOR_BIND_MEMBER(&Copter::handle_battery_failsafe, void, const char*, const int8_t),
_failsafe_priorities};
#if FRSKY_TELEM_ENABLED == ENABLED
// FrSky telemetry support
AP_Frsky_Telem frsky_telemetry{ahrs, battery, rangefinder};
#endif
#if DEVO_TELEM_ENABLED == ENABLED
AP_DEVO_Telem devo_telemetry{ahrs};
#endif
#if OSD_ENABLED == ENABLED
AP_OSD osd;
#endif
// Variables for extended status MAVLink messages
uint32_t control_sensors_present;
uint32_t control_sensors_enabled;
uint32_t control_sensors_health;
// Altitude
// The cm/s we are moving up or down based on filtered data - Positive = UP
int16_t climb_rate;
float target_rangefinder_alt; // desired altitude in cm above the ground
bool target_rangefinder_alt_used; // true if mode is using target_rangefinder_alt
int32_t baro_alt; // barometer altitude in cm above home
LowPassFilterVector3f land_accel_ef_filter; // accelerations for land and crash detector tests
// filtered pilot's throttle input used to cancel landing if throttle held high
LowPassFilterFloat rc_throttle_control_in_filter;
// 3D Location vectors
// Current location of the vehicle (altitude is relative to home)
Location_Class current_loc;
// IMU variables
// Integration time (in seconds) for the gyros (DCM algorithm)
// Updated with the fast loop
float G_Dt;
// Inertial Navigation
AP_InertialNav_NavEKF inertial_nav;
// Attitude, Position and Waypoint navigation objects
// To-Do: move inertial nav up or other navigation variables down here
#if FRAME_CONFIG == HELI_FRAME
#define AC_AttitudeControl_t AC_AttitudeControl_Heli
#else
#define AC_AttitudeControl_t AC_AttitudeControl_Multi
#endif
AC_AttitudeControl_t *attitude_control;
AC_PosControl *pos_control;
AC_WPNav *wp_nav;
AC_Loiter *loiter_nav;
#if MODE_CIRCLE_ENABLED == ENABLED
AC_Circle *circle_nav;
#endif
// System Timers
// --------------
// arm_time_ms - Records when vehicle was armed. Will be Zero if we are disarmed.
uint32_t arm_time_ms;
// Used to exit the roll and pitch auto trim function
uint8_t auto_trim_counter;
// Reference to the relay object
AP_Relay relay;
// handle repeated servo and relay events
AP_ServoRelayEvents ServoRelayEvents{relay};
// Camera
#if CAMERA == ENABLED
AP_Camera camera{&relay, MASK_LOG_CAMERA, current_loc, ahrs};
#endif
// Camera/Antenna mount tracking and stabilisation stuff
#if MOUNT == ENABLED
// current_loc uses the baro/gps solution for altitude rather than gps only.
AP_Mount camera_mount{ahrs, current_loc};
#endif
// AC_Fence library to reduce fly-aways
#if AC_FENCE == ENABLED
AC_Fence fence{ahrs};
#endif
#if AC_AVOID_ENABLED == ENABLED
# if BEACON_ENABLED == ENABLED
AC_Avoid avoid{ahrs, fence, g2.proximity, &g2.beacon};
# else
AC_Avoid avoid{ahrs, fence, g2.proximity};
# endif
#endif
// Rally library
#if AC_RALLY == ENABLED
AP_Rally_Copter rally{ahrs};
#endif
// RSSI
AP_RSSI rssi;
// Crop Sprayer
#if SPRAYER_ENABLED == ENABLED
AC_Sprayer sprayer;
#endif
// Parachute release
#if PARACHUTE == ENABLED
AP_Parachute parachute{relay};
#endif
// Landing Gear Controller
AP_LandingGear landinggear;
// terrain handling
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
AP_Terrain terrain{ahrs, mission, rally};
#endif
// Precision Landing
#if PRECISION_LANDING == ENABLED
AC_PrecLand precland{ahrs};
#endif
// Pilot Input Management Library
// Only used for Helicopter for now
#if FRAME_CONFIG == HELI_FRAME
AC_InputManager_Heli input_manager;
#endif
#if ADSB_ENABLED == ENABLED
AP_ADSB adsb;
// avoidance of adsb enabled vehicles (normally manned vehicles)
AP_Avoidance_Copter avoidance_adsb{ahrs, adsb};
#endif
// last valid RC input time
uint32_t last_radio_update_ms;
// last esc calibration notification update
uint32_t esc_calibration_notify_update_ms;
#if VISUAL_ODOMETRY_ENABLED == ENABLED
// last visual odometry update time
uint32_t visual_odom_last_update_ms;
#endif
// Top-level logic
// setup the var_info table
AP_Param param_loader;
#if FRAME_CONFIG == HELI_FRAME
// Mode filter to reject RC Input glitches. Filter size is 5, and it draws the 4th element, so it can reject 3 low glitches,
// and 1 high glitch. This is because any "off" glitches can be highly problematic for a helicopter running an ESC
// governor. Even a single "off" frame can cause the rotor to slow dramatically and take a long time to restart.
ModeFilterInt16_Size5 rotor_speed_deglitch_filter {4};
// Tradheli flags
typedef struct {
uint8_t dynamic_flight : 1; // 0 // true if we are moving at a significant speed (used to turn on/off leaky I terms)
uint8_t init_targets_on_arming : 1; // 1 // true if we have been disarmed, and need to reset rate controller targets when we arm
uint8_t inverted_flight : 1; // 2 // true for inverted flight mode
} heli_flags_t;
heli_flags_t heli_flags;
int16_t hover_roll_trim_scalar_slew;
#endif
// ground effect detector
struct {
bool takeoff_expected;
bool touchdown_expected;
uint32_t takeoff_time_ms;
float takeoff_alt_cm;
} gndeffect_state;
// set when we are upgrading parameters from 3.4
bool upgrading_frame_params;
static const AP_Scheduler::Task scheduler_tasks[];
static const AP_Param::Info var_info[];
static const struct LogStructure log_structure[];
enum Failsafe_Action {
Failsafe_Action_None = 0,
Failsafe_Action_Land = 1,
Failsafe_Action_RTL = 2,
Failsafe_Action_SmartRTL = 3,
Failsafe_Action_SmartRTL_Land = 4,
Failsafe_Action_Terminate = 5
};
static constexpr int8_t _failsafe_priorities[] = {
Failsafe_Action_Terminate,
Failsafe_Action_Land,
Failsafe_Action_RTL,
Failsafe_Action_SmartRTL_Land,
Failsafe_Action_SmartRTL,
Failsafe_Action_None,
-1 // the priority list must end with a sentinel of -1
};
#define FAILSAFE_LAND_PRIORITY 1
static_assert(_failsafe_priorities[FAILSAFE_LAND_PRIORITY] == Failsafe_Action_Land,
"FAILSAFE_LAND_PRIORITY must match the entry in _failsafe_priorities");
static_assert(_failsafe_priorities[ARRAY_SIZE(_failsafe_priorities) - 1] == -1,
"_failsafe_priorities is missing the sentinel");
// AP_State.cpp
void set_auto_armed(bool b);
void set_simple_mode(uint8_t b);
void set_failsafe_radio(bool b);
void set_failsafe_gcs(bool b);
void update_using_interlock();
void set_motor_emergency_stop(bool b);
// ArduCopter.cpp
void fast_loop();
void rc_loop();
void throttle_loop();
void update_batt_compass(void);
void fourhundred_hz_logging();
void ten_hz_logging_loop();
void twentyfive_hz_logging();
void three_hz_loop();
void one_hz_loop();
void update_GPS(void);
void init_simple_bearing();
void update_simple_mode(void);
void update_super_simple_bearing(bool force_update);
void read_AHRS(void);
void update_altitude();
// Attitude.cpp
float get_pilot_desired_yaw_rate(int16_t stick_angle);
void update_throttle_hover();
void set_throttle_takeoff();
float get_pilot_desired_throttle(int16_t throttle_control, float thr_mid = 0.0f);
float get_pilot_desired_climb_rate(float throttle_control);
float get_non_takeoff_throttle();
float get_surface_tracking_climb_rate(int16_t target_rate, float current_alt_target, float dt);
float get_avoidance_adjusted_climbrate(float target_rate);
void set_accel_throttle_I_from_pilot_throttle();
void rotate_body_frame_to_NE(float &x, float &y);
uint16_t get_pilot_speed_dn();
#if ADSB_ENABLED == ENABLED
// avoidance_adsb.cpp
void avoidance_adsb_update(void);
#endif
// baro_ground_effect.cpp
void update_ground_effect_detector(void);
// capabilities.cpp
void init_capabilities(void);
// commands.cpp
void update_home_from_EKF();
void set_home_to_current_location_inflight();
bool set_home_to_current_location(bool lock);
bool set_home(const Location& loc, bool lock);
bool far_from_EKF_origin(const Location& loc);
// compassmot.cpp
MAV_RESULT mavlink_compassmot(mavlink_channel_t chan);
// crash_check.cpp
void crash_check();
void parachute_check();
void parachute_release();
void parachute_manual_release();
// ekf_check.cpp
void ekf_check();
bool ekf_over_threshold();
void failsafe_ekf_event();
void failsafe_ekf_off_event(void);
void check_ekf_reset();
// esc_calibration.cpp
void esc_calibration_startup_check();
void esc_calibration_passthrough();
void esc_calibration_auto();
void esc_calibration_notify();
// events.cpp
void failsafe_radio_on_event();
void failsafe_radio_off_event();
void handle_battery_failsafe(const char* type_str, const int8_t action);
void failsafe_gcs_check();
void failsafe_gcs_off_event(void);
void failsafe_terrain_check();
void failsafe_terrain_set_status(bool data_ok);
void failsafe_terrain_on_event();
void gpsglitch_check();
void set_mode_RTL_or_land_with_pause(mode_reason_t reason);
void set_mode_SmartRTL_or_RTL(mode_reason_t reason);
void set_mode_SmartRTL_or_land_with_pause(mode_reason_t reason);
bool should_disarm_on_failsafe();
// failsafe.cpp
void failsafe_enable();
void failsafe_disable();
#if ADVANCED_FAILSAFE == ENABLED
void afs_fs_check(void);
#endif
// fence.cpp
void fence_check();
void fence_send_mavlink_status(mavlink_channel_t chan);
// GCS_Mavlink.cpp
void gcs_send_heartbeat(void);
void gcs_send_deferred(void);
void send_fence_status(mavlink_channel_t chan);
void send_extended_status1(mavlink_channel_t chan);
void send_nav_controller_output(mavlink_channel_t chan);
void send_rpm(mavlink_channel_t chan);
void send_pid_tuning(mavlink_channel_t chan);
void gcs_data_stream_send(void);
void gcs_check_input(void);
// heli.cpp
void heli_init();
void check_dynamic_flight(void);
void update_heli_control_dynamics(void);
void heli_update_landing_swash();
void heli_update_rotor_speed_targets();
// inertia.cpp
void read_inertia();
// landing_detector.cpp
void update_land_and_crash_detectors();
void update_land_detector();
void set_land_complete(bool b);
void set_land_complete_maybe(bool b);
void update_throttle_thr_mix();
// landing_gear.cpp
void landinggear_update();
// Log.cpp
void Log_Write_Optflow();
void Log_Write_Control_Tuning();
void Log_Write_Performance();
void Log_Write_Attitude();
void Log_Write_EKF_POS();
void Log_Write_MotBatt();
void Log_Write_Event(uint8_t id);
void Log_Write_Data(uint8_t id, int32_t value);
void Log_Write_Data(uint8_t id, uint32_t value);
void Log_Write_Data(uint8_t id, int16_t value);
void Log_Write_Data(uint8_t id, uint16_t value);
void Log_Write_Data(uint8_t id, float value);
void Log_Write_Error(uint8_t sub_system, uint8_t error_code);
void Log_Write_Parameter_Tuning(uint8_t param, float tuning_val, int16_t control_in, int16_t tune_low, int16_t tune_high);
void Log_Sensor_Health();
#if FRAME_CONFIG == HELI_FRAME
void Log_Write_Heli(void);
#endif
void Log_Write_Precland();
void Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target);
void Log_Write_Vehicle_Startup_Messages();
void log_init(void);
// mode.cpp
bool set_mode(control_mode_t mode, mode_reason_t reason);
void update_flight_mode();
void notify_flight_mode();
// mode_land.cpp
void set_mode_land_with_pause(mode_reason_t reason);
bool landing_with_GPS();
// motor_test.cpp
void motor_test_output();
bool mavlink_motor_test_check(mavlink_channel_t chan, bool check_rc);
MAV_RESULT mavlink_motor_test_start(mavlink_channel_t chan, uint8_t motor_seq, uint8_t throttle_type, uint16_t throttle_value, float timeout_sec, uint8_t motor_count);
void motor_test_stop();
// motors.cpp
void arm_motors_check();
void auto_disarm_check();
bool init_arm_motors(AP_Arming::ArmingMethod method, bool do_arming_checks=true);
void init_disarm_motors();
void motors_output();
void lost_vehicle_check();
// navigation.cpp
void run_nav_updates(void);
int32_t home_bearing();
uint32_t home_distance();
// Parameters.cpp
void load_parameters(void);
void convert_pid_parameters(void);
// position_vector.cpp
Vector3f pv_location_to_vector(const Location& loc);
float pv_alt_above_origin(float alt_above_home_cm);
float pv_alt_above_home(float alt_above_origin_cm);
float pv_distance_to_home_cm(const Vector3f &destination);
// precision_landing.cpp
void init_precland();
void update_precland();
// radio.cpp
void default_dead_zones();
void init_rc_in();
void init_rc_out();
void enable_motor_output();
void read_radio();
void set_throttle_and_failsafe(uint16_t throttle_pwm);
void set_throttle_zero_flag(int16_t throttle_control);
void radio_passthrough_to_motors();
int16_t get_throttle_mid(void);
// sensors.cpp
void read_barometer(void);
void init_rangefinder(void);
void read_rangefinder(void);
bool rangefinder_alt_ok();
void rpm_update();
void init_compass();
void compass_accumulate(void);
void init_optflow();
void update_optical_flow(void);
void compass_cal_update(void);
void accel_cal_update(void);
void init_proximity();
void update_proximity();
void update_sensor_status_flags(void);
void init_visual_odom();
void update_visual_odom();
void winch_init();
void winch_update();
// setup.cpp
void report_compass();
void print_blanks(int16_t num);
void print_divider(void);
void print_enabled(bool b);
void report_version();
// switches.cpp
void read_control_switch();
bool check_if_auxsw_mode_used(uint8_t auxsw_mode_check);
bool check_duplicate_auxsw(void);
void reset_control_switch();
uint8_t read_3pos_switch(uint8_t chan);
void read_aux_switches();
void init_aux_switches();
void init_aux_switch_function(int8_t ch_option, uint8_t ch_flag);
void do_aux_switch_function(int8_t ch_function, uint8_t ch_flag);
bool debounce_aux_switch(uint8_t chan, uint8_t ch_flag);
void save_trim();
void auto_trim();
// system.cpp
void init_ardupilot();
void startup_INS_ground();
bool position_ok();
bool ekf_position_ok();
bool optflow_position_ok();
void update_auto_armed();
bool should_log(uint32_t mask);
void set_default_frame_class();
MAV_TYPE get_frame_mav_type();
const char* get_frame_string();
void allocate_motors(void);
void auto_takeoff_set_start_alt(void);
void auto_takeoff_attitude_run(float target_yaw_rate);
// terrain.cpp
void terrain_update();
void terrain_logging();
bool terrain_use();
// tuning.cpp
void tuning();
// UserCode.cpp
void userhook_init();
void userhook_FastLoop();
void userhook_50Hz();
void userhook_MediumLoop();
void userhook_SlowLoop();
void userhook_SuperSlowLoop();
#include "mode.h"
Mode *flightmode;
#if MODE_ACRO_ENABLED == ENABLED
#if FRAME_CONFIG == HELI_FRAME
ModeAcro_Heli mode_acro;
#else
ModeAcro mode_acro;
#endif
#endif
ModeAltHold mode_althold;
#if MODE_AUTO_ENABLED == ENABLED
ModeAuto mode_auto;
#endif
#if AUTOTUNE_ENABLED == ENABLED
ModeAutoTune mode_autotune;
#endif
#if MODE_BRAKE_ENABLED == ENABLED
ModeBrake mode_brake;
#endif
#if MODE_CIRCLE_ENABLED == ENABLED
ModeCircle mode_circle;
#endif
#if MODE_DRIFT_ENABLED == ENABLED
ModeDrift mode_drift;
#endif
ModeFlip mode_flip;
#if MODE_FOLLOW_ENABLED == ENABLED
ModeFollow mode_follow;
#endif
#if MODE_GUIDED_ENABLED == ENABLED
ModeGuided mode_guided;
#endif
ModeLand mode_land;
#if MODE_LOITER_ENABLED == ENABLED
ModeLoiter mode_loiter;
#endif
#if MODE_POSHOLD_ENABLED == ENABLED
ModePosHold mode_poshold;
#endif
#if MODE_RTL_ENABLED == ENABLED
ModeRTL mode_rtl;
#endif
#if FRAME_CONFIG == HELI_FRAME
ModeStabilize_Heli mode_stabilize;
#else
ModeStabilize mode_stabilize;
#endif
#if MODE_SPORT_ENABLED == ENABLED
ModeSport mode_sport;
#endif
#if ADSB_ENABLED == ENABLED
ModeAvoidADSB mode_avoid_adsb;
#endif
#if MODE_THROW_ENABLED == ENABLED
ModeThrow mode_throw;
#endif
#if MODE_GUIDED_NOGPS_ENABLED == ENABLED
ModeGuidedNoGPS mode_guided_nogps;
#endif
#if MODE_SMARTRTL_ENABLED == ENABLED
ModeSmartRTL mode_smartrtl;
#endif
#if !HAL_MINIMIZE_FEATURES && OPTFLOW == ENABLED
ModeFlowHold mode_flowhold;
#endif
// mode.cpp
Mode *mode_from_mode_num(const uint8_t mode);
void exit_mode(Mode *&old_flightmode, Mode *&new_flightmode);
public:
void mavlink_delay_cb(); // GCS_Mavlink.cpp
void failsafe_check(); // failsafe.cpp
};
extern const AP_HAL::HAL& hal;
extern Copter copter;
using AP_HAL::millis;
using AP_HAL::micros;