/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "AP_RPM.h" #if AP_RPM_ENABLED #include "RPM_Backend.h" #include "RPM_Pin.h" #include "RPM_SITL.h" #include "RPM_EFI.h" #include "RPM_Generator.h" #include "RPM_HarmonicNotch.h" #include "RPM_ESC_Telem.h" #include "RPM_DroneCAN.h" #include <AP_Logger/AP_Logger.h> extern const AP_HAL::HAL& hal; // table of user settable parameters const AP_Param::GroupInfo AP_RPM::var_info[] = { // 0-13 used by old param indexes before being moved to AP_RPM_Params // @Group: 1_ // @Path: AP_RPM_Params.cpp AP_SUBGROUPINFO(_params[0], "1_", 14, AP_RPM, AP_RPM_Params), #if RPM_MAX_INSTANCES > 1 // @Group: 2_ // @Path: AP_RPM_Params.cpp AP_SUBGROUPINFO(_params[1], "2_", 15, AP_RPM, AP_RPM_Params), #endif AP_GROUPEND }; AP_RPM::AP_RPM(void) { AP_Param::setup_object_defaults(this, var_info); if (_singleton != nullptr) { AP_HAL::panic("AP_RPM must be singleton"); } _singleton = this; } /* initialise the AP_RPM class. */ void AP_RPM::init(void) { if (num_instances != 0) { // init called a 2nd time? return; } convert_params(); for (uint8_t i=0; i<RPM_MAX_INSTANCES; i++) { switch (_params[i].type) { #if AP_RPM_PIN_ENABLED case RPM_TYPE_PWM: case RPM_TYPE_PIN: // PWM option same as PIN option, for upgrade drivers[i] = new AP_RPM_Pin(*this, i, state[i]); break; #endif // AP_RPM_PIN_ENABLED #if AP_RPM_ESC_TELEM_ENABLED case RPM_TYPE_ESC_TELEM: drivers[i] = new AP_RPM_ESC_Telem(*this, i, state[i]); break; #endif // AP_RPM_ESC_TELEM_ENABLED #if AP_RPM_EFI_ENABLED case RPM_TYPE_EFI: drivers[i] = new AP_RPM_EFI(*this, i, state[i]); break; #endif // AP_RPM_EFI_ENABLED #if AP_RPM_GENERATOR_ENABLED case RPM_TYPE_GENERATOR: drivers[i] = new AP_RPM_Generator(*this, i, state[i]); break; #endif // AP_RPM_GENERATOR_ENABLED #if AP_RPM_HARMONICNOTCH_ENABLED // include harmonic notch last // this makes whatever process is driving the dynamic notch appear as an RPM value case RPM_TYPE_HNTCH: drivers[i] = new AP_RPM_HarmonicNotch(*this, i, state[i]); break; #endif // AP_RPM_HARMONICNOTCH_ENABLED #if AP_RPM_DRONECAN_ENABLED case RPM_TYPE_DRONECAN: drivers[i] = new AP_RPM_DroneCAN(*this, i, state[i]); break; #endif // AP_RPM_DRONECAN_ENABLED #if AP_RPM_SIM_ENABLED case RPM_TYPE_SITL: drivers[i] = new AP_RPM_SITL(*this, i, state[i]); break; #endif // AP_RPM_SIM_ENABLED } if (drivers[i] != nullptr) { // we loaded a driver for this instance, so it must be // present (although it may not be healthy) num_instances = i+1; // num_instances is a high-water-mark } } } /* PARAMETER_CONVERSION - Added: Aug-2021 */ void AP_RPM::convert_params(void) { if (_params[0].type.configured()) { // _params[0].type will always be configured after conversion is done the first time return; } // don't do conversion if neither RPM types were set bool type_set; uint8_t rpm_type = 0; uint8_t rpm2_type = 0; type_set = AP_Param::get_param_by_index(this, 0, AP_PARAM_INT8, &rpm_type); type_set |= AP_Param::get_param_by_index(this, 10, AP_PARAM_INT8, &rpm2_type); if (!type_set || (rpm_type == 0 && rpm2_type == 0)) { return; } struct ConversionTable { uint8_t old_element; uint8_t new_index; uint8_t instance; }; const struct ConversionTable conversionTable[] = { // RPM 1 {0, 0, 0}, // TYPE {1, 1, 0}, // SCALING {2, 2, 0}, // MAX {3, 3, 0}, // MIN {4, 4, 0}, // MIN_QUAL {5, 5, 0}, // PIN {6, 6, 0}, // ESC_MASK // RPM 2 {10, 0, 1}, // TYPE {11, 1, 1}, // SCALING // MAX (Previous bug meant RPM2_MAX param was never accesible to users. No conversion required.) // MIN (Previous bug meant RPM2_MIN param was never accesible to users. No conversion required.) {4, 4, 1}, // MIN_QUAL (Previously the min quality of the 1st RPM instance was used for all RPM instances.) {12, 5, 1}, // PIN {13, 6, 1}, // ESC_MASK }; char param_name[17] = {0}; AP_Param::ConversionInfo info; info.new_name = param_name; if (!AP_Param::find_top_level_key_by_pointer(this, info.old_key)) { _params[0].type.save(true); return; // no conversion is supported on this platform } for (uint8_t i = 0; i < ARRAY_SIZE(conversionTable); i++) { uint8_t param_instance = conversionTable[i].instance + 1; uint8_t destination_index = conversionTable[i].new_index; info.old_group_element = conversionTable[i].old_element; // The var type of the params has not changed in the conversion so this is ok: info.type = (ap_var_type)AP_RPM_Params::var_info[destination_index].type; hal.util->snprintf(param_name, sizeof(param_name), "RPM%X_%s", param_instance, AP_RPM_Params::var_info[destination_index].name); param_name[sizeof(param_name)-1] = '\0'; AP_Param::convert_old_parameter(&info, 1.0f, 0); } // force _params[0].type into storage to flag that conversion has been done _params[0].type.save(true); } /* update RPM state for all instances. This should be called by main loop */ void AP_RPM::update(void) { for (uint8_t i=0; i<num_instances; i++) { if (drivers[i] != nullptr) { if (_params[i].type == RPM_TYPE_NONE) { // allow user to disable an RPM sensor at runtime and force it to re-learn the quality if re-enabled. state[i].signal_quality = 0; continue; } drivers[i]->update(); #if AP_RPM_ESC_TELEM_OUTBOUND_ENABLED drivers[i]->update_esc_telem_outbound(); #endif } } #if HAL_LOGGING_ENABLED if (enabled(0) || enabled(1)) { Log_RPM(); } #endif } /* check if an instance is healthy */ bool AP_RPM::healthy(uint8_t instance) const { if (instance >= num_instances || _params[instance].type == RPM_TYPE_NONE) { return false; } // check that data quality is above minimum required if (state[instance].signal_quality < _params[instance].quality_min) { return false; } return true; } /* check if an instance is activated */ bool AP_RPM::enabled(uint8_t instance) const { if (instance >= num_instances) { return false; } // if no sensor type is selected, the sensor is not activated. if (_params[instance].type == RPM_TYPE_NONE) { return false; } return true; } /* get RPM value, return true on success */ bool AP_RPM::get_rpm(uint8_t instance, float &rpm_value) const { if (!healthy(instance)) { return false; } rpm_value = state[instance].rate_rpm; return true; } // check settings are valid bool AP_RPM::arming_checks(size_t buflen, char *buffer) const { for (uint8_t i=0; i<RPM_MAX_INSTANCES; i++) { switch (_params[i].type) { #if AP_RPM_PIN_ENABLED case RPM_TYPE_PWM: case RPM_TYPE_PIN: if (_params[i].pin == -1) { hal.util->snprintf(buffer, buflen, "RPM%u_PIN not set", unsigned(i + 1)); return false; } if (!hal.gpio->valid_pin(_params[i].pin)) { uint8_t servo_ch; if (hal.gpio->pin_to_servo_channel(_params[i].pin, servo_ch)) { hal.util->snprintf(buffer, buflen, "RPM%u_PIN=%d, set SERVO%u_FUNCTION=-1", unsigned(i + 1), int(_params[i].pin.get()), unsigned(servo_ch+1)); } else { hal.util->snprintf(buffer, buflen, "RPM%u_PIN=%d invalid", unsigned(i + 1), int(_params[i].pin.get())); } return false; } break; #endif } } return true; } #if HAL_LOGGING_ENABLED void AP_RPM::Log_RPM() const { float rpm1 = -1, rpm2 = -1; get_rpm(0, rpm1); get_rpm(1, rpm2); const struct log_RPM pkt{ LOG_PACKET_HEADER_INIT(LOG_RPM_MSG), time_us : AP_HAL::micros64(), rpm1 : rpm1, rpm2 : rpm2 }; AP::logger().WriteBlock(&pkt, sizeof(pkt)); } #endif #ifdef HAL_PERIPH_ENABLE_RPM_STREAM // Return the sensor id to use for streaming over DroneCAN, negative number disables int8_t AP_RPM::get_dronecan_sensor_id(uint8_t instance) const { if (!enabled(instance)) { return -1; } return _params[instance].dronecan_sensor_id; } #endif // singleton instance AP_RPM *AP_RPM::_singleton; namespace AP { AP_RPM *rpm() { return AP_RPM::get_singleton(); } } #endif // AP_RPM_ENABLED