/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* multicopter simulator class */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include "SIM_Multicopter.h" #include Motor m(90, false, 1); static const Motor quad_plus_motors[4] = { Motor(90, false, 1), Motor(270, false, 2), Motor(0, true, 3), Motor(180, true, 4) }; static const Motor quad_x_motors[4] = { Motor(45, false, 1), Motor(225, false, 2), Motor(315, true, 3), Motor(135, true, 4) }; static const Motor hexa_motors[6] = { Motor(60, false, 1), Motor(60, true, 7), Motor(180, true, 4), Motor(180, false, 8), Motor(-60, true, 2), Motor(-60, false, 3), }; static const Motor hexax_motors[6] = { Motor(30, false, 7), Motor(90, true, 1), Motor(150, false, 4), Motor(210, true, 8), Motor(270, false, 2), Motor(330, true, 3) }; static const Motor octa_motors[8] = { Motor(0, true, 1), Motor(180, true, 2), Motor(45, false, 3), Motor(135, false, 4), Motor(-45, false, 5), Motor(-135, false, 6), Motor(270, true, 7), Motor(90, true, 8) }; static const Motor octa_quad_motors[8] = { Motor( 45, false, 1), Motor( -45, true, 2), Motor(-135, false, 3), Motor( 135, true, 4), Motor( -45, false, 5), Motor( 45, true, 6), Motor( 135, false, 7), Motor(-135, true, 8) }; /* table of supported frame types */ static const Frame supported_frames[] = { Frame("+", 4, quad_plus_motors), Frame("quad", 4, quad_plus_motors), Frame("copter", 4, quad_plus_motors), Frame("x", 4, quad_x_motors), Frame("hexa", 6, hexa_motors), Frame("hexax", 6, hexax_motors), Frame("octa", 8, octa_motors), Frame("octa-quad", 8, octa_quad_motors) }; /* constructor */ MultiCopter::MultiCopter(const char *home_str, const char *frame_str) : Aircraft(home_str, frame_str), frame(NULL), hover_throttle(0.51), terminal_velocity(15.0), terminal_rotation_rate(4*radians(360.0)) { for (uint8_t i=0; i < ARRAY_SIZE(supported_frames); i++) { if (strcasecmp(frame_str, supported_frames[i].name) == 0) { frame = &supported_frames[i]; } } if (frame == NULL) { printf("Frame '%s' not found", frame_str); exit(1); } /* scaling from total motor power to Newtons. Allows the copter to hover against gravity when each motor is at hover_throttle */ mass = 1.5; thrust_scale = (mass * GRAVITY_MSS) / (frame->num_motors * hover_throttle); frame_height = 0.1; } /* update the multicopter simulation by one time step */ void MultiCopter::update(const struct sitl_input &input) { float motor_speed[frame->num_motors]; for (uint8_t i=0; inum_motors; i++) { uint16_t servo = input.servos[frame->motors[i].servo-1]; // assume 1000 to 2000 PWM range if (servo <= 1000) { motor_speed[i] = 0; } else { motor_speed[i] = (servo-1000) / 1000.0f; } } // how much time has passed? float delta_time = frame_time_us * 1.0e-6f; // rotational acceleration, in rad/s/s, in body frame Vector3f rot_accel; float thrust = 0.0f; // newtons for (uint8_t i=0; inum_motors; i++) { rot_accel.x += -radians(5000.0) * sinf(radians(frame->motors[i].angle)) * motor_speed[i]; rot_accel.y += radians(5000.0) * cosf(radians(frame->motors[i].angle)) * motor_speed[i]; if (frame->motors[i].clockwise) { rot_accel.z -= motor_speed[i] * radians(400.0); } else { rot_accel.z += motor_speed[i] * radians(400.0); } thrust += motor_speed[i] * thrust_scale; // newtons } // rotational air resistance rot_accel.x -= gyro.x * radians(5000.0) / terminal_rotation_rate; rot_accel.y -= gyro.y * radians(5000.0) / terminal_rotation_rate; rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate; // update rotational rates in body frame gyro += rot_accel * delta_time; // update attitude dcm.rotate(gyro * delta_time); dcm.normalize(); // air resistance Vector3f air_resistance = -velocity_ef * (GRAVITY_MSS/terminal_velocity); accel_body = Vector3f(0, 0, -thrust / mass); Vector3f accel_earth = dcm * accel_body; accel_earth += Vector3f(0, 0, GRAVITY_MSS); accel_earth += air_resistance; // if we're on the ground, then our vertical acceleration is limited // to zero. This effectively adds the force of the ground on the aircraft if (on_ground(position) && accel_earth.z > 0) { accel_earth.z = 0; } // work out acceleration as seen by the accelerometers. It sees the kinematic // acceleration (ie. real movement), plus gravity accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS)); // add some noise add_noise(thrust / (thrust_scale * frame->num_motors)); // new velocity vector velocity_ef += accel_earth * delta_time; // new position vector Vector3f old_position = position; position += velocity_ef * delta_time; // assume zero wind for now airspeed = velocity_ef.length(); // constrain height to the ground if (on_ground(position)) { if (!on_ground(old_position)) { printf("Hit ground at %f m/s\n", velocity_ef.z); velocity_ef.zero(); // zero roll/pitch, but keep yaw float r, p, y; dcm.to_euler(&r, &p, &y); dcm.from_euler(0, 0, y); position.z = -(ground_level + frame_height - home.alt*0.01f); } } // update lat/lon/altitude update_position(); } #endif // CONFIG_HAL_BOARD