/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_Compass_HMC5843.cpp - Arduino Library for HMC5843 I2C magnetometer * Code by Jordi Muñoz and Jose Julio. DIYDrones.com * * Sensor is connected to I2C port * Sensor is initialized in Continuos mode (10Hz) * */ #include #ifdef HAL_COMPASS_HMC5843_I2C_ADDR #include #include #include #include #include #include #include "AP_Compass_HMC5843.h" #include #include extern const AP_HAL::HAL& hal; /* * Defaul address: 0x1E */ #define HMC5843_REG_CONFIG_A 0x00 // Valid sample averaging for 5883L #define HMC5843_SAMPLE_AVERAGING_1 (0x00 << 5) #define HMC5843_SAMPLE_AVERAGING_2 (0x01 << 5) #define HMC5843_SAMPLE_AVERAGING_4 (0x02 << 5) #define HMC5843_SAMPLE_AVERAGING_8 (0x03 << 5) #define HMC5843_CONF_TEMP_ENABLE (0x80) // Valid data output rates for 5883L #define HMC5843_OSR_0_75HZ (0x00 << 2) #define HMC5843_OSR_1_5HZ (0x01 << 2) #define HMC5843_OSR_3HZ (0x02 << 2) #define HMC5843_OSR_7_5HZ (0x03 << 2) #define HMC5843_OSR_15HZ (0x04 << 2) #define HMC5843_OSR_30HZ (0x05 << 2) #define HMC5843_OSR_75HZ (0x06 << 2) // Sensor operation modes #define HMC5843_OPMODE_NORMAL 0x00 #define HMC5843_OPMODE_POSITIVE_BIAS 0x01 #define HMC5843_OPMODE_NEGATIVE_BIAS 0x02 #define HMC5843_OPMODE_MASK 0x03 #define HMC5843_REG_CONFIG_B 0x01 #define HMC5883L_GAIN_0_88_GA (0x00 << 5) #define HMC5883L_GAIN_1_30_GA (0x01 << 5) #define HMC5883L_GAIN_1_90_GA (0x02 << 5) #define HMC5883L_GAIN_2_50_GA (0x03 << 5) #define HMC5883L_GAIN_4_00_GA (0x04 << 5) #define HMC5883L_GAIN_4_70_GA (0x05 << 5) #define HMC5883L_GAIN_5_60_GA (0x06 << 5) #define HMC5883L_GAIN_8_10_GA (0x07 << 5) #define HMC5843_GAIN_0_70_GA (0x00 << 5) #define HMC5843_GAIN_1_00_GA (0x01 << 5) #define HMC5843_GAIN_1_50_GA (0x02 << 5) #define HMC5843_GAIN_2_00_GA (0x03 << 5) #define HMC5843_GAIN_3_20_GA (0x04 << 5) #define HMC5843_GAIN_3_80_GA (0x05 << 5) #define HMC5843_GAIN_4_50_GA (0x06 << 5) #define HMC5843_GAIN_6_50_GA (0x07 << 5) #define HMC5843_REG_MODE 0x02 #define HMC5843_MODE_CONTINUOUS 0x00 #define HMC5843_MODE_SINGLE 0x01 #define HMC5843_REG_DATA_OUTPUT_X_MSB 0x03 #define HMC5843_REG_ID_A 0x0A AP_Compass_HMC5843::AP_Compass_HMC5843(Compass &compass, AP_HMC5843_BusDriver *bus, bool force_external, enum Rotation rotation) : AP_Compass_Backend(compass) , _bus(bus) , _force_external(force_external) , _rotation(rotation) { } AP_Compass_HMC5843::~AP_Compass_HMC5843() { delete _bus; } AP_Compass_Backend *AP_Compass_HMC5843::probe(Compass &compass, AP_HAL::OwnPtr dev, bool force_external, enum Rotation rotation) { AP_HMC5843_BusDriver *bus = new AP_HMC5843_BusDriver_HALDevice(std::move(dev)); if (!bus) { return nullptr; } AP_Compass_HMC5843 *sensor = new AP_Compass_HMC5843(compass, bus, force_external, rotation); if (!sensor || !sensor->init()) { delete sensor; return nullptr; } return sensor; } AP_Compass_Backend *AP_Compass_HMC5843::probe_mpu6000(Compass &compass, enum Rotation rotation) { AP_InertialSensor &ins = *AP_InertialSensor::get_instance(); AP_HMC5843_BusDriver *bus = new AP_HMC5843_BusDriver_Auxiliary(ins, HAL_INS_MPU60XX_SPI, HAL_COMPASS_HMC5843_I2C_ADDR); if (!bus) { return nullptr; } AP_Compass_HMC5843 *sensor = new AP_Compass_HMC5843(compass, bus, false, rotation); if (!sensor || !sensor->init()) { delete sensor; return nullptr; } return sensor; } bool AP_Compass_HMC5843::init() { AP_HAL::Semaphore *bus_sem = _bus->get_semaphore(); if (!bus_sem || !bus_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { hal.console->printf("HMC5843: Unable to get bus semaphore\n"); return false; } if (!_bus->configure()) { hal.console->printf("HMC5843: Could not configure the bus\n"); goto errout; } if (!_check_whoami()) { hal.console->printf("HMC5843: not a HMC device\n"); goto errout; } if (!_calibrate()) { hal.console->printf("HMC5843: Could not calibrate sensor\n"); goto errout; } if (!_setup_sampling_mode()) { goto errout; } if (!_bus->start_measurements()) { hal.console->printf("HMC5843: Could not start measurements on bus\n"); goto errout; } _initialised = true; bus_sem->give(); // perform an initial read read(); _compass_instance = register_compass(); set_rotation(_compass_instance, _rotation); _bus->set_device_type(DEVTYPE_HMC5883); set_dev_id(_compass_instance, _bus->get_bus_id()); if (_force_external) { set_external(_compass_instance, true); } // read from sensor at 75Hz _bus->register_periodic_callback(13333, FUNCTOR_BIND_MEMBER(&AP_Compass_HMC5843::_timer, bool)); return true; errout: bus_sem->give(); return false; } /* * take a reading from the magnetometer * * bus semaphore has been taken already by HAL */ bool AP_Compass_HMC5843::_timer() { bool result = _read_sample(); // always ask for a new sample _take_sample(); if (!result) { return true; } uint32_t tnow = AP_HAL::micros(); // the _mag_N values are in the range -2048 to 2047, so we can // accumulate up to 15 of them in an int16_t. Let's make it 14 // for ease of calculation. We expect to do reads at 10Hz, and // we get new data at most 75Hz, so we don't expect to // accumulate more than 8 before a read // get raw_field - sensor frame, uncorrected Vector3f raw_field = Vector3f(_mag_x, _mag_y, _mag_z); raw_field *= _gain_scale; // rotate to the desired orientation if (is_external(_compass_instance)) { raw_field.rotate(ROTATION_YAW_90); } // rotate raw_field from sensor frame to body frame rotate_field(raw_field, _compass_instance); // publish raw_field (uncorrected point sample) for calibration use publish_raw_field(raw_field, tnow, _compass_instance); // correct raw_field for known errors correct_field(raw_field, _compass_instance); if (_sem->take(0)) { _mag_x_accum += raw_field.x; _mag_y_accum += raw_field.y; _mag_z_accum += raw_field.z; _accum_count++; if (_accum_count == 14) { _mag_x_accum /= 2; _mag_y_accum /= 2; _mag_z_accum /= 2; _accum_count = 7; } _sem->give(); } return true; } /* * Take accumulated reads from the magnetometer or try to read once if no * valid data * * bus semaphore must not be locked */ void AP_Compass_HMC5843::read() { if (!_initialised) { // someone has tried to enable a compass for the first time // mid-flight .... we can't do that yet (especially as we won't // have the right orientation!) return; } if (!_sem->take_nonblocking()) { return; } if (_accum_count == 0) { _sem->give(); return; } Vector3f field(_mag_x_accum * _scaling[0], _mag_y_accum * _scaling[1], _mag_z_accum * _scaling[2]); field /= _accum_count; _accum_count = 0; _mag_x_accum = _mag_y_accum = _mag_z_accum = 0; _sem->give(); publish_filtered_field(field, _compass_instance); } bool AP_Compass_HMC5843::_setup_sampling_mode() { _gain_scale = (1.0f / 1090) * 1000; if (!_bus->register_write(HMC5843_REG_CONFIG_A, HMC5843_CONF_TEMP_ENABLE | HMC5843_OSR_75HZ | HMC5843_SAMPLE_AVERAGING_1) || !_bus->register_write(HMC5843_REG_CONFIG_B, HMC5883L_GAIN_1_30_GA) || !_bus->register_write(HMC5843_REG_MODE, HMC5843_MODE_SINGLE)) { return false; } return true; } /* * Read Sensor data - bus semaphore must be taken */ bool AP_Compass_HMC5843::_read_sample() { struct PACKED { be16_t rx; be16_t ry; be16_t rz; } val; int16_t rx, ry, rz; if (!_bus->block_read(HMC5843_REG_DATA_OUTPUT_X_MSB, (uint8_t *) &val, sizeof(val))){ return false; } rx = be16toh(val.rx); ry = be16toh(val.rz); rz = be16toh(val.ry); if (rx == -4096 || ry == -4096 || rz == -4096) { // no valid data available return false; } _mag_x = -rx; _mag_y = ry; _mag_z = -rz; return true; } /* ask for a new oneshot sample */ void AP_Compass_HMC5843::_take_sample() { _bus->register_write(HMC5843_REG_MODE, HMC5843_MODE_SINGLE); } bool AP_Compass_HMC5843::_check_whoami() { uint8_t id[3]; if (!_bus->block_read(HMC5843_REG_ID_A, id, 3)) { // can't talk on bus return false; } if (id[0] != 'H' || id[1] != '4' || id[2] != '3') { // not a HMC5x83 device return false; } return true; } bool AP_Compass_HMC5843::_calibrate() { uint8_t calibration_gain; int numAttempts = 0, good_count = 0; bool success = false; calibration_gain = HMC5883L_GAIN_2_50_GA; /* * the expected values are based on observation of real sensors */ float expected[3] = { 1.16*600, 1.08*600, 1.16*600 }; uint8_t old_config; if (!_bus->register_read(HMC5843_REG_CONFIG_A, &old_config)) { return false; } while (success == 0 && numAttempts < 25 && good_count < 5) { numAttempts++; // force positiveBias (compass should return 715 for all channels) if (!_bus->register_write(HMC5843_REG_CONFIG_A, old_config | HMC5843_OPMODE_POSITIVE_BIAS)) { // compass not responding on the bus continue; } hal.scheduler->delay(50); // set gains if (!_bus->register_write(HMC5843_REG_CONFIG_B, calibration_gain) || !_bus->register_write(HMC5843_REG_MODE, HMC5843_MODE_SINGLE)) { continue; } // read values from the compass hal.scheduler->delay(50); if (!_read_sample()) { // we didn't read valid values continue; } float cal[3]; // hal.console->printf("mag %d %d %d\n", _mag_x, _mag_y, _mag_z); cal[0] = fabsf(expected[0] / _mag_x); cal[1] = fabsf(expected[1] / _mag_y); cal[2] = fabsf(expected[2] / _mag_z); // hal.console->printf("cal=%.2f %.2f %.2f\n", cal[0], cal[1], cal[2]); // we throw away the first two samples as the compass may // still be changing its state from the application of the // strap excitation. After that we accept values in a // reasonable range if (numAttempts <= 2) { continue; } #define IS_CALIBRATION_VALUE_VALID(val) (val > 0.7f && val < 1.35f) if (IS_CALIBRATION_VALUE_VALID(cal[0]) && IS_CALIBRATION_VALUE_VALID(cal[1]) && IS_CALIBRATION_VALUE_VALID(cal[2])) { // hal.console->printf("car=%.2f %.2f %.2f good\n", cal[0], cal[1], cal[2]); good_count++; _scaling[0] += cal[0]; _scaling[1] += cal[1]; _scaling[2] += cal[2]; } #undef IS_CALIBRATION_VALUE_VALID #if 0 /* useful for debugging */ printf("MagX: %d MagY: %d MagZ: %d\n", (int)_mag_x, (int)_mag_y, (int)_mag_z); printf("CalX: %.2f CalY: %.2f CalZ: %.2f\n", cal[0], cal[1], cal[2]); #endif } if (good_count >= 5) { _scaling[0] = _scaling[0] / good_count; _scaling[1] = _scaling[1] / good_count; _scaling[2] = _scaling[2] / good_count; success = true; } else { /* best guess */ _scaling[0] = 1.0; _scaling[1] = 1.0; _scaling[2] = 1.0; } #if 0 printf("scaling: %.2f %.2f %.2f\n", _scaling[0], _scaling[1], _scaling[2]); #endif return success; } /* AP_HAL::Device implementation of the HMC5843 */ AP_HMC5843_BusDriver_HALDevice::AP_HMC5843_BusDriver_HALDevice(AP_HAL::OwnPtr dev) : _dev(std::move(dev)) { // set read and auto-increment flags on SPI if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) { _dev->set_read_flag(0xC0); } } bool AP_HMC5843_BusDriver_HALDevice::block_read(uint8_t reg, uint8_t *buf, uint32_t size) { return _dev->read_registers(reg, buf, size); } bool AP_HMC5843_BusDriver_HALDevice::register_read(uint8_t reg, uint8_t *val) { return _dev->read_registers(reg, val, 1); } bool AP_HMC5843_BusDriver_HALDevice::register_write(uint8_t reg, uint8_t val) { return _dev->write_register(reg, val); } AP_HAL::Semaphore *AP_HMC5843_BusDriver_HALDevice::get_semaphore() { return _dev->get_semaphore(); } AP_HAL::Device::PeriodicHandle AP_HMC5843_BusDriver_HALDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb) { return _dev->register_periodic_callback(period_usec, cb); } /* HMC5843 on an auxiliary bus of IMU driver */ AP_HMC5843_BusDriver_Auxiliary::AP_HMC5843_BusDriver_Auxiliary(AP_InertialSensor &ins, uint8_t backend_id, uint8_t addr) { /* * Only initialize members. Fails are handled by configure or while * getting the semaphore */ _bus = ins.get_auxiliary_bus(backend_id); if (!_bus) { return; } _slave = _bus->request_next_slave(addr); } AP_HMC5843_BusDriver_Auxiliary::~AP_HMC5843_BusDriver_Auxiliary() { /* After started it's owned by AuxiliaryBus */ if (!_started) { delete _slave; } } bool AP_HMC5843_BusDriver_Auxiliary::block_read(uint8_t reg, uint8_t *buf, uint32_t size) { if (_started) { /* * We can only read a block when reading the block of sample values - * calling with any other value is a mistake */ assert(reg == HMC5843_REG_DATA_OUTPUT_X_MSB); int n = _slave->read(buf); return n == static_cast(size); } int r = _slave->passthrough_read(reg, buf, size); return r > 0 && static_cast(r) == size; } bool AP_HMC5843_BusDriver_Auxiliary::register_read(uint8_t reg, uint8_t *val) { return _slave->passthrough_read(reg, val, 1) == 1; } bool AP_HMC5843_BusDriver_Auxiliary::register_write(uint8_t reg, uint8_t val) { return _slave->passthrough_write(reg, val) == 1; } AP_HAL::Semaphore *AP_HMC5843_BusDriver_Auxiliary::get_semaphore() { return _bus->get_semaphore(); } bool AP_HMC5843_BusDriver_Auxiliary::configure() { if (!_bus || !_slave) { return false; } return true; } bool AP_HMC5843_BusDriver_Auxiliary::start_measurements() { if (_bus->register_periodic_read(_slave, HMC5843_REG_DATA_OUTPUT_X_MSB, 6) < 0) { return false; } _started = true; return true; } AP_HAL::Device::PeriodicHandle AP_HMC5843_BusDriver_Auxiliary::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb) { return _bus->register_periodic_callback(period_usec, cb); } // set device type within a device class void AP_HMC5843_BusDriver_Auxiliary::set_device_type(uint8_t devtype) { _bus->set_device_type(devtype); } // return 24 bit bus identifier uint32_t AP_HMC5843_BusDriver_Auxiliary::get_bus_id(void) const { return _bus->get_bus_id(); } #endif