#include "Copter.h" void Copter::init_barometer(bool full_calibration) { gcs_send_text(MAV_SEVERITY_INFO, "Calibrating barometer"); if (full_calibration) { barometer.calibrate(); }else{ barometer.update_calibration(); } gcs_send_text(MAV_SEVERITY_INFO, "Barometer calibration complete"); } // return barometric altitude in centimeters void Copter::read_barometer(void) { barometer.update(); if (should_log(MASK_LOG_IMU)) { Log_Write_Baro(); } baro_alt = barometer.get_altitude() * 100.0f; baro_climbrate = barometer.get_climb_rate() * 100.0f; motors.set_air_density_ratio(barometer.get_air_density_ratio()); } void Copter::init_rangefinder(void) { #if RANGEFINDER_ENABLED == ENABLED rangefinder.init(); rangefinder_state.alt_cm_filt.set_cutoff_frequency(RANGEFINDER_WPNAV_FILT_HZ); rangefinder_state.enabled = (rangefinder.num_sensors() >= 1); #endif } // return rangefinder altitude in centimeters void Copter::read_rangefinder(void) { #if RANGEFINDER_ENABLED == ENABLED rangefinder.update(); if (rangefinder.num_sensors() > 0 && should_log(MASK_LOG_CTUN)) { DataFlash.Log_Write_RFND(rangefinder); } rangefinder_state.alt_healthy = ((rangefinder.status() == RangeFinder::RangeFinder_Good) && (rangefinder.range_valid_count() >= RANGEFINDER_HEALTH_MAX)); int16_t temp_alt = rangefinder.distance_cm(); #if RANGEFINDER_TILT_CORRECTION == ENABLED // correct alt for angle of the rangefinder temp_alt = (float)temp_alt * MAX(0.707f, ahrs.get_rotation_body_to_ned().c.z); #endif rangefinder_state.alt_cm = temp_alt; // filter rangefinder for use by AC_WPNav uint32_t now = AP_HAL::millis(); if (rangefinder_state.alt_healthy) { if (now - rangefinder_state.last_healthy_ms > RANGEFINDER_TIMEOUT_MS) { // reset filter if we haven't used it within the last second rangefinder_state.alt_cm_filt.reset(rangefinder_state.alt_cm); } else { rangefinder_state.alt_cm_filt.apply(rangefinder_state.alt_cm, 0.05f); } rangefinder_state.last_healthy_ms = now; } // send rangefinder altitude and health to waypoint navigation library wp_nav.set_rangefinder_alt(rangefinder_state.enabled, rangefinder_state.alt_healthy, rangefinder_state.alt_cm_filt.get()); #else rangefinder_state.enabled = false; rangefinder_state.alt_healthy = false; rangefinder_state.alt_cm = 0; #endif } // return true if rangefinder_alt can be used bool Copter::rangefinder_alt_ok() { return (rangefinder_state.enabled && rangefinder_state.alt_healthy); } /* update RPM sensors */ void Copter::rpm_update(void) { rpm_sensor.update(); if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) { if (should_log(MASK_LOG_RCIN)) { DataFlash.Log_Write_RPM(rpm_sensor); } } } // initialise compass void Copter::init_compass() { if (!compass.init() || !compass.read()) { // make sure we don't pass a broken compass to DCM cliSerial->println("COMPASS INIT ERROR"); Log_Write_Error(ERROR_SUBSYSTEM_COMPASS,ERROR_CODE_FAILED_TO_INITIALISE); return; } ahrs.set_compass(&compass); } // initialise optical flow sensor void Copter::init_optflow() { #if OPTFLOW == ENABLED // exit immediately if not enabled if (!optflow.enabled()) { return; } // initialise optical flow sensor optflow.init(); #endif // OPTFLOW == ENABLED } // called at 200hz #if OPTFLOW == ENABLED void Copter::update_optical_flow(void) { static uint32_t last_of_update = 0; // exit immediately if not enabled if (!optflow.enabled()) { return; } // read from sensor optflow.update(); // write to log and send to EKF if new data has arrived if (optflow.last_update() != last_of_update) { last_of_update = optflow.last_update(); uint8_t flowQuality = optflow.quality(); Vector2f flowRate = optflow.flowRate(); Vector2f bodyRate = optflow.bodyRate(); const Vector3f &posOffset = optflow.get_pos_offset(); ahrs.writeOptFlowMeas(flowQuality, flowRate, bodyRate, last_of_update, posOffset); if (g.log_bitmask & MASK_LOG_OPTFLOW) { Log_Write_Optflow(); } } } #endif // OPTFLOW == ENABLED // read_battery - check battery voltage and current and invoke failsafe if necessary // called at 10hz void Copter::read_battery(void) { battery.read(); // update compass with current value if (battery.has_current()) { compass.set_current(battery.current_amps()); } // update motors with voltage and current if (battery.get_type() != AP_BattMonitor::BattMonitor_TYPE_NONE) { motors.set_voltage(battery.voltage()); } if (battery.has_current()) { motors.set_current(battery.current_amps()); } // check for low voltage or current if the low voltage check hasn't already been triggered // we only check when we're not powered by USB to avoid false alarms during bench tests if (!ap.usb_connected && !failsafe.battery && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah)) { failsafe_battery_event(); } // log battery info to the dataflash if (should_log(MASK_LOG_CURRENT)) { Log_Write_Current(); } } // read the receiver RSSI as an 8 bit number for MAVLink // RC_CHANNELS_SCALED message void Copter::read_receiver_rssi(void) { receiver_rssi = rssi.read_receiver_rssi_uint8(); } void Copter::compass_cal_update() { static uint32_t compass_cal_stick_gesture_begin = 0; if (!hal.util->get_soft_armed()) { compass.compass_cal_update(); } if (compass.is_calibrating()) { if (channel_yaw->get_control_in() < -4000 && channel_throttle->get_control_in() > 900) { compass.cancel_calibration_all(); } } else { bool stick_gesture_detected = compass_cal_stick_gesture_begin != 0 && !motors.armed() && channel_yaw->get_control_in() > 4000 && channel_throttle->get_control_in() > 900; uint32_t tnow = millis(); if (!stick_gesture_detected) { compass_cal_stick_gesture_begin = tnow; } else if (tnow-compass_cal_stick_gesture_begin > 1000*COMPASS_CAL_STICK_GESTURE_TIME) { #ifdef CAL_ALWAYS_REBOOT compass.start_calibration_all(true,true,COMPASS_CAL_STICK_DELAY,true); #else compass.start_calibration_all(true,true,COMPASS_CAL_STICK_DELAY,false); #endif } } } void Copter::accel_cal_update() { if (hal.util->get_soft_armed()) { return; } ins.acal_update(); // check if new trim values, and set them float trim_roll, trim_pitch; if(ins.get_new_trim(trim_roll, trim_pitch)) { ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); } #ifdef CAL_ALWAYS_REBOOT if (ins.accel_cal_requires_reboot()) { hal.scheduler->delay(1000); hal.scheduler->reboot(false); } #endif } #if GRIPPER_ENABLED == ENABLED // gripper update void Copter::gripper_update() { g2.gripper.update(); } #endif /* update AP_Button */ void Copter::button_update(void) { g2.button.update(); } // initialise proximity sensor void Copter::init_proximity(void) { #if PROXIMITY_ENABLED == ENABLED g2.proximity.init(); #endif } // update proximity sensor void Copter::update_proximity(void) { #if PROXIMITY_ENABLED == ENABLED g2.proximity.update(); #endif } // update error mask of sensors and subsystems. The mask // uses the MAV_SYS_STATUS_* values from mavlink. If a bit is set // then it indicates that the sensor or subsystem is present but // not functioning correctly. void Copter::update_sensor_status_flags(void) { // default sensors present control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT; // first what sensors/controllers we have if (g.compass_enabled) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present } if (gps.status() > AP_GPS::NO_GPS) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS; } #if OPTFLOW == ENABLED if (optflow.enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif #if PRECISION_LANDING == ENABLED if (precland.enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_VISION_POSITION; } #endif if (ap.rc_receiver_present) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER; } if (copter.DataFlash.logging_present()) { // primary logging only (usually File) control_sensors_present |= MAV_SYS_STATUS_LOGGING; } #if PROXIMITY_ENABLED == ENABLED if (copter.g2.proximity.get_status() > AP_Proximity::Proximity_NotConnected) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; } #endif // all present sensors enabled by default except altitude and position control and motors which we will set individually control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL & ~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & ~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & ~MAV_SYS_STATUS_LOGGING); switch (control_mode) { case AUTO: case AVOID_ADSB: case GUIDED: case LOITER: case RTL: case CIRCLE: case LAND: case POSHOLD: case BRAKE: case THROW: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; break; case ALT_HOLD: case GUIDED_NOGPS: case SPORT: case AUTOTUNE: control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_Z_ALTITUDE_CONTROL; break; default: // stabilize, acro, drift, and flip have no automatic x,y or z control (i.e. all manual) break; } // set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED) if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; } if (copter.DataFlash.logging_enabled()) { control_sensors_enabled |= MAV_SYS_STATUS_LOGGING; } // default to all healthy control_sensors_health = control_sensors_present; if (!barometer.all_healthy()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE; } if (!g.compass_enabled || !compass.healthy() || !ahrs.use_compass()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_MAG; } if (gps.status() == AP_GPS::NO_GPS) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_GPS; } if (!ap.rc_receiver_present || failsafe.radio) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_RC_RECEIVER; } #if OPTFLOW == ENABLED if (!optflow.healthy()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW; } #endif #if PRECISION_LANDING == ENABLED if (!precland.healthy()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_VISION_POSITION; } #endif if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO; } if (!ins.get_accel_health_all()) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL; } if (ahrs.initialised() && !ahrs.healthy()) { // AHRS subsystem is unhealthy control_sensors_health &= ~MAV_SYS_STATUS_AHRS; } if (copter.DataFlash.logging_failed()) { control_sensors_health &= ~MAV_SYS_STATUS_LOGGING; } #if PROXIMITY_ENABLED == ENABLED if (copter.g2.proximity.get_status() < AP_Proximity::Proximity_Good) { control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_LASER_POSITION; } #endif #if AP_TERRAIN_AVAILABLE && AC_TERRAIN switch (terrain.status()) { case AP_Terrain::TerrainStatusDisabled: break; case AP_Terrain::TerrainStatusUnhealthy: // To-Do: restore unhealthy terrain status reporting once terrain is used in copter //control_sensors_present |= MAV_SYS_STATUS_TERRAIN; //control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN; //break; case AP_Terrain::TerrainStatusOK: control_sensors_present |= MAV_SYS_STATUS_TERRAIN; control_sensors_enabled |= MAV_SYS_STATUS_TERRAIN; control_sensors_health |= MAV_SYS_STATUS_TERRAIN; break; } #endif #if RANGEFINDER_ENABLED == ENABLED if (rangefinder.num_sensors() > 0) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; if (rangefinder.has_data()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; } } #endif if (!ap.initialised || ins.calibrating()) { // while initialising the gyros and accels are not enabled control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); } #if FRSKY_TELEM_ENABLED == ENABLED // give mask of error flags to Frsky_Telemetry frsky_telemetry.update_sensor_status_flags(~control_sensors_health & control_sensors_enabled & control_sensors_present); #endif }