/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Flymaple port by Mike McCauley */ // Interface to the Flymaple sensors: // ITG3205 Gyroscope http://www.sparkfun.com/datasheets/Sensors/Gyro/PS-ITG-3200-00-01.4.pdf // ADXL345 Accelerometer http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf #include #if CONFIG_HAL_BOARD == HAL_BOARD_FLYMAPLE #include "AP_InertialSensor_Flymaple.h" const extern AP_HAL::HAL& hal; /// Statics Vector3f AP_InertialSensor_Flymaple::_accel_filtered; uint32_t AP_InertialSensor_Flymaple::_accel_samples; Vector3f AP_InertialSensor_Flymaple::_gyro_filtered; uint32_t AP_InertialSensor_Flymaple::_gyro_samples; volatile bool AP_InertialSensor_Flymaple::_in_accumulate; uint64_t AP_InertialSensor_Flymaple::_last_accel_timestamp; uint64_t AP_InertialSensor_Flymaple::_last_gyro_timestamp; LowPassFilter2p AP_InertialSensor_Flymaple::_accel_filter_x(0, 0); LowPassFilter2p AP_InertialSensor_Flymaple::_accel_filter_y(0, 0); LowPassFilter2p AP_InertialSensor_Flymaple::_accel_filter_z(0, 0); LowPassFilter2p AP_InertialSensor_Flymaple::_gyro_filter_x(0, 0); LowPassFilter2p AP_InertialSensor_Flymaple::_gyro_filter_y(0, 0); LowPassFilter2p AP_InertialSensor_Flymaple::_gyro_filter_z(0, 0); // This is how often we wish to make raw samples of the sensors in Hz const uint32_t raw_sample_rate_hz = 800; // And the equivalent time between samples in microseconds const uint32_t raw_sample_interval_us = (1000000 / raw_sample_rate_hz); /////// /// Accelerometer ADXL345 register definitions #define FLYMAPLE_ACCELEROMETER_ADDRESS 0x53 #define FLYMAPLE_ACCELEROMETER_XL345_DEVID 0xe5 #define FLYMAPLE_ACCELEROMETER_ADXLREG_BW_RATE 0x2c #define FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL 0x2d #define FLYMAPLE_ACCELEROMETER_ADXLREG_DATA_FORMAT 0x31 #define FLYMAPLE_ACCELEROMETER_ADXLREG_DEVID 0x00 #define FLYMAPLE_ACCELEROMETER_ADXLREG_DATAX0 0x32 #define FLYMAPLE_ACCELEROMETER_GRAVITY 248 // ADXL345 accelerometer scaling // Result will be scaled to 1m/s/s // ADXL345 in Full resolution mode (any g scaling) is 256 counts/g, so scale by 9.81/256 = 0.038320312 #define FLYMAPLE_ACCELEROMETER_SCALE_M_S (GRAVITY_MSS / 256.0f) /// Gyro ITG3205 register definitions #define FLYMAPLE_GYRO_ADDRESS 0x68 #define FLYMAPLE_GYRO_WHO_AM_I 0x00 #define FLYMAPLE_GYRO_PWR_MGM 0x3e #define FLYMAPLE_GYRO_DLPF_FS 0x16 #define FLYMAPLE_GYRO_INT_CFG 0x17 #define FLYMAPLE_GYRO_SMPLRT_DIV 0x15 #define FLYMAPLE_GYRO_GYROX_H 0x1d // ITG3200 Gyroscope scaling // ITG3200 is 14.375 LSB degrees/sec with FS_SEL=3 // Result wil be radians/sec #define FLYMAPLE_GYRO_SCALE_R_S (1.0f / 14.375f) * (3.1415926f / 180.0f) uint16_t AP_InertialSensor_Flymaple::_init_sensor( Sample_rate sample_rate ) { // Sensors are raw sampled at 800Hz. // Here we figure the divider to get the rate that update will be called switch (sample_rate) { case RATE_50HZ: _sample_divider = 16; _default_filter_hz = 10; break; case RATE_100HZ: _sample_divider = 8; _default_filter_hz = 20; break; case RATE_200HZ: default: _sample_divider = 4; _default_filter_hz = 20; break; } // Init the accelerometer uint8_t data; hal.i2c->readRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DEVID, &data); if (data != FLYMAPLE_ACCELEROMETER_XL345_DEVID) hal.scheduler->panic(PSTR("AP_InertialSensor_Flymaple: could not find ADXL345 accelerometer sensor")); hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0x00); hal.scheduler->delay(5); hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0xff); hal.scheduler->delay(5); // Measure mode: hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0x08); hal.scheduler->delay(5); // Full resolution, 8g: // Caution, this must agree with FLYMAPLE_ACCELEROMETER_SCALE_1G // In full resoution mode, the scale factor need not change hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DATA_FORMAT, 0x08); hal.scheduler->delay(5); // Normal power, 800Hz Output Data Rate, 400Hz bandwidth: hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_BW_RATE, 0x0d); hal.scheduler->delay(5); // Power up default is FIFO bypass mode. FIFO is not used by the chip // Init the Gyro // Expect to read the same as the Gyro I2C adress: hal.i2c->readRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_WHO_AM_I, &data); if (data != FLYMAPLE_GYRO_ADDRESS) hal.scheduler->panic(PSTR("AP_InertialSensor_Flymaple: could not find ITG-3200 accelerometer sensor")); hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_PWR_MGM, 0x00); hal.scheduler->delay(1); // Sample rate divider: with 8kHz internal clock (see FLYMAPLE_GYRO_DLPF_FS), // get 500Hz sample rate, 2 samples hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_SMPLRT_DIV, 0x0f); hal.scheduler->delay(1); // 2000 degrees/sec, 256Hz LPF, 8kHz internal sample rate // This is the least amount of filtering we can configure for this device hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_DLPF_FS, 0x18); hal.scheduler->delay(1); // No interrupts hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_INT_CFG, 0x00); hal.scheduler->delay(1); // Set up the filter desired _set_filter_frequency(_mpu6000_filter); return AP_PRODUCT_ID_FLYMAPLE; } /* set the filter frequency */ void AP_InertialSensor_Flymaple::_set_filter_frequency(uint8_t filter_hz) { if (filter_hz == 0) filter_hz = _default_filter_hz; _accel_filter_x.set_cutoff_frequency(raw_sample_rate_hz, filter_hz); _accel_filter_y.set_cutoff_frequency(raw_sample_rate_hz, filter_hz); _accel_filter_z.set_cutoff_frequency(raw_sample_rate_hz, filter_hz); _gyro_filter_x.set_cutoff_frequency(raw_sample_rate_hz, filter_hz); _gyro_filter_y.set_cutoff_frequency(raw_sample_rate_hz, filter_hz); _gyro_filter_z.set_cutoff_frequency(raw_sample_rate_hz, filter_hz); } /*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ // This takes about 20us to run bool AP_InertialSensor_Flymaple::update(void) { while (sample_available() == false) { hal.scheduler->delay(1); } Vector3f accel_scale = _accel_scale.get(); // Not really needed since Flymaple _accumulate runs in the main thread hal.scheduler->suspend_timer_procs(); // base the time on the gyro timestamp, as that is what is // multiplied by time to integrate in DCM _delta_time = (_last_gyro_timestamp - _last_update_usec) * 1.0e-6f; _last_update_usec = _last_gyro_timestamp; _accel = _accel_filtered; _accel_samples = 0; _gyro = _gyro_filtered; _gyro_samples = 0; hal.scheduler->resume_timer_procs(); // add offsets and rotation _accel.rotate(_board_orientation); // Adjust for chip scaling to get m/s/s _accel *= FLYMAPLE_ACCELEROMETER_SCALE_M_S; // Now the calibration scale factor _accel.x *= accel_scale.x; _accel.y *= accel_scale.y; _accel.z *= accel_scale.z; _accel -= _accel_offset; _gyro.rotate(_board_orientation); // Adjust for chip scaling to get radians/sec _gyro *= FLYMAPLE_GYRO_SCALE_R_S; _gyro -= _gyro_offset; if (_last_filter_hz != _mpu6000_filter) { _set_filter_frequency(_mpu6000_filter); _last_filter_hz = _mpu6000_filter; } return true; } float AP_InertialSensor_Flymaple::get_delta_time(void) { return _delta_time; } uint32_t AP_InertialSensor_Flymaple::get_last_sample_time_micros(void) { return _last_update_usec; } float AP_InertialSensor_Flymaple::get_gyro_drift_rate(void) { // Dont really know this for the ITG-3200. // 0.5 degrees/second/minute return ToRad(0.5/60); } // This needs to get called as often as possible. // Its job is to accumulate samples as fast as is reasonable for the accel and gyro // sensors. // Cant call this from within the system timers, since the long I2C reads (up to 1ms) // with interrupts disabled breaks lots of things // Therefore must call this as often as possible from // within the mainline and thropttle the reads here to suit the sensors void AP_InertialSensor_Flymaple::_accumulate(void) { if (_in_accumulate) { return; // Dont be re-entrant (how can this occur?) } _in_accumulate = true; // Read accelerometer // ADXL345 is in the default FIFO bypass mode, so the FIFO is not used uint8_t buffer[6]; uint64_t now = hal.scheduler->micros(); // This takes about 500us at 200kHz I2C speed if (now > (_last_accel_timestamp + raw_sample_interval_us) && hal.i2c->readRegisters(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DATAX0, 6, buffer) == 0) { // The order is a bit wierd here since the standard we have adopted for Flymaple // sensor orientation is different to what the board designers intended // Caution, to support alternative chip orientations on other bords, may // need to add a chip orientation rotate int16_t y = -((((int16_t)buffer[1]) << 8) | buffer[0]); // chip X axis int16_t x = -((((int16_t)buffer[3]) << 8) | buffer[2]); // chip Y axis int16_t z = -((((int16_t)buffer[5]) << 8) | buffer[4]); // chip Z axis _accel_filtered = Vector3f(_accel_filter_x.apply(x), _accel_filter_y.apply(y), _accel_filter_z.apply(z)); _accel_samples++; _last_accel_timestamp = now; } // Read gyro now = hal.scheduler->micros(); // This takes about 500us at 200kHz I2C speed if (now > (_last_gyro_timestamp + raw_sample_interval_us) && hal.i2c->readRegisters(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_GYROX_H, 6, buffer) == 0) { // See above re order of samples in buffer int16_t y = -((((int16_t)buffer[0]) << 8) | buffer[1]); // chip X axis int16_t x = -((((int16_t)buffer[2]) << 8) | buffer[3]); // chip Y axis int16_t z = -((((int16_t)buffer[4]) << 8) | buffer[5]); // chip Z axis _gyro_filtered = Vector3f(_gyro_filter_x.apply(x), _gyro_filter_y.apply(y), _gyro_filter_z.apply(z)); _gyro_samples++; _last_gyro_timestamp = now; } _in_accumulate = false; } bool AP_InertialSensor_Flymaple::sample_available(void) { _accumulate(); return min(_accel_samples, _gyro_samples) / _sample_divider > 0; } #endif // CONFIG_HAL_BOARD