/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Flymaple port by Mike McCauley */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_FLYMAPLE // Flymaple RC Outputs // Derived from libmaple Servo.cpp #include "RCOutput.h" #include "FlymapleWirish.h" using namespace AP_HAL_FLYMAPLE_NS; #define MAX_OVERFLOW ((1 << 16) - 1) void FLYMAPLERCOutput::init(void* machtnichts) {} void FLYMAPLERCOutput::set_freq(uint32_t chmask, uint16_t freq_hz) { for (int i = 0; i < 32; i++) { if ((chmask >> i) & 1) { _set_freq(i, freq_hz); } } } uint16_t FLYMAPLERCOutput::get_freq(uint8_t ch) { if (ch >= FLYMAPLE_RC_OUTPUT_NUM_CHANNELS) return 0; uint8_t pin = _channel_to_flymaple_pin(ch); timer_dev *tdev = PIN_MAP[pin].timer_device; if (tdev == NULL) return 0; // Should never happen uint16 prescaler = timer_get_prescaler(tdev); uint16 overflow = timer_get_reload(tdev); return F_CPU / (prescaler+1) / overflow; } void FLYMAPLERCOutput::enable_ch(uint8_t ch) { if (ch >= FLYMAPLE_RC_OUTPUT_NUM_CHANNELS) return; uint8_t pin = _channel_to_flymaple_pin(ch); timer_dev *tdev = PIN_MAP[pin].timer_device; if (tdev == NULL) { // don't reset any fields or ASSERT(0), to keep driving any // previously attach()ed servo. return; } pinMode(pin, PWM); _set_freq(ch, 50); // Default to 50 Hz write(ch, 0); } void FLYMAPLERCOutput::enable_mask(uint32_t chmask) { for (int i = 0; i < 32; i++) { if ((chmask >> i) & 1) { enable_ch(i); } } } void FLYMAPLERCOutput::disable_ch(uint8_t ch) { if (ch >= FLYMAPLE_RC_OUTPUT_NUM_CHANNELS) return; // TODO } void FLYMAPLERCOutput::disable_mask(uint32_t chmask) { for (int i = 0; i < 32; i++) { if ((chmask >> i) & 1) { disable_ch(i); } } } void FLYMAPLERCOutput::write(uint8_t ch, uint16_t period_us) { if (ch >= FLYMAPLE_RC_OUTPUT_NUM_CHANNELS) return; uint8_t pin = _channel_to_flymaple_pin(ch); pwmWrite(pin, (period_us * _clocks_per_msecond[ch]) / 1000); } void FLYMAPLERCOutput::write(uint8_t ch, uint16_t* period_us, uint8_t len) { for (int i = 0; i < len; i++) write(i + ch, period_us[i]); } uint16_t FLYMAPLERCOutput::read(uint8_t ch) { if (ch >= FLYMAPLE_RC_OUTPUT_NUM_CHANNELS) return 0; uint8_t pin = _channel_to_flymaple_pin(ch); timer_dev *tdev = PIN_MAP[pin].timer_device; uint8 timer_channel = PIN_MAP[pin].timer_channel; __io uint32 *ccr = &(tdev->regs).gen->CCR1 + (timer_channel - 1); return *ccr * 1000 / _clocks_per_msecond[ch]; } void FLYMAPLERCOutput::read(uint16_t* period_us, uint8_t len) { for (int i = 0; i < len; i++) period_us[i] = read(i); } uint8_t FLYMAPLERCOutput::_channel_to_flymaple_pin(uint8_t ch) { // This maps the ArduPilot channel numbers to Flymaple PWM output pins // Channels on the same timer ALWAYS use the same frequency (the last one set) // 28, 27, 11, 12 use Timer 3 OK // 24, 14, 5, 9 use Timer 4 BREAKS I2C on pins 5 and 9 // 35, 36, 37, 38 use Timer 8 DONT USE: CRASHES. WHY? // 0 1, 2, 3 use Timer 2 OK static uint8_t ch_to_pin[FLYMAPLE_RC_OUTPUT_NUM_CHANNELS] = { 28, 27, 11, 12, 24, 14 }; if (ch >= FLYMAPLE_RC_OUTPUT_NUM_CHANNELS) return 0; // Should never happen. REVISIT? else return ch_to_pin[ch]; } void FLYMAPLERCOutput::_set_freq(uint8_t ch, uint16_t freq_hz) { if (ch >= FLYMAPLE_RC_OUTPUT_NUM_CHANNELS) return; if (freq_hz == 0) return; // Silly, avoid divide by 0 later uint8_t pin = _channel_to_flymaple_pin(ch); timer_dev *tdev = PIN_MAP[pin].timer_device; if (tdev == NULL) return; // Should never happen uint32 microseconds = 1000000 / freq_hz; // per period uint32 period_cyc = microseconds * CYCLES_PER_MICROSECOND; // system clock cycles per period // This picks the smallest prescaler that allows an overflow < 2^16. uint16 prescaler = (uint16)(period_cyc / MAX_OVERFLOW + 1); uint16 overflow = (uint16)(period_cyc / (prescaler+1)); _clocks_per_msecond[ch] = F_CPU / (prescaler+1) / 1000; timer_pause(tdev); timer_set_prescaler(tdev, prescaler); timer_set_reload(tdev, overflow); timer_generate_update(tdev); timer_resume(tdev); } #endif