#include "Tracker.h" /* * Code to move pitch and yaw servos to attain a target heading or pitch */ // init_servos - initialises the servos void Tracker::init_servos() { // update assigned functions and enable auxiliary servos SRV_Channels::enable_aux_servos(); SRV_Channels::set_default_function(CH_YAW, SRV_Channel::k_tracker_yaw); SRV_Channels::set_default_function(CH_PITCH, SRV_Channel::k_tracker_pitch); // yaw range is +/- (YAW_RANGE parameter/2) converted to centi-degrees SRV_Channels::set_angle(SRV_Channel::k_tracker_yaw, g.yaw_range * 100/2); // pitch range is +/- (PITCH_MIN/MAX parameters/2) converted to centi-degrees SRV_Channels::set_angle(SRV_Channel::k_tracker_pitch, (-g.pitch_min+g.pitch_max) * 100/2); SRV_Channels::calc_pwm(); SRV_Channels::output_ch_all(); yaw_servo_out_filt.set_cutoff_frequency(SERVO_OUT_FILT_HZ); pitch_servo_out_filt.set_cutoff_frequency(SERVO_OUT_FILT_HZ); } /** update the pitch (elevation) servo. The aim is to drive the boards ahrs pitch to the requested pitch, so the board (and therefore the antenna) will be pointing at the target */ void Tracker::update_pitch_servo(float pitch) { switch ((enum ServoType)g.servo_pitch_type.get()) { case SERVO_TYPE_ONOFF: update_pitch_onoff_servo(pitch); break; case SERVO_TYPE_CR: update_pitch_cr_servo(pitch); break; case SERVO_TYPE_POSITION: default: update_pitch_position_servo(); break; } } /** update the pitch (elevation) servo. The aim is to drive the boards ahrs pitch to the requested pitch, so the board (and therefore the antenna) will be pointing at the target */ void Tracker::update_pitch_position_servo() { int32_t pitch_min_cd = g.pitch_min*100; int32_t pitch_max_cd = g.pitch_max*100; // Need to configure your servo so that increasing servo_out causes increase in pitch/elevation (ie pointing higher into the sky, // above the horizon. On my antenna tracker this requires the pitch/elevation servo to be reversed // param set RC2_REV -1 // // The pitch servo (RC channel 2) is configured for servo_out of -9000-0-9000 servo_out, // which will drive the servo from RC2_MIN to RC2_MAX usec pulse width. // Therefore, you must set RC2_MIN and RC2_MAX so that your servo drives the antenna altitude between -90 to 90 exactly // To drive my HS-645MG servos through their full 180 degrees of rotational range, I have to set: // param set RC2_MAX 2540 // param set RC2_MIN 640 // // You will also need to tune the pitch PID to suit your antenna and servos. I use: // PITCH2SRV_P 0.100000 // PITCH2SRV_I 0.020000 // PITCH2SRV_D 0.000000 // PITCH2SRV_IMAX 4000.000000 // calculate new servo position g.pidPitch2Srv.set_input_filter_all(nav_status.angle_error_pitch); int32_t new_servo_out = SRV_Channels::get_output_scaled(SRV_Channel::k_tracker_pitch) + g.pidPitch2Srv.get_pid(); // position limit pitch servo if (new_servo_out <= pitch_min_cd) { new_servo_out = pitch_min_cd; g.pidPitch2Srv.reset_I(); } if (new_servo_out >= pitch_max_cd) { new_servo_out = pitch_max_cd; g.pidPitch2Srv.reset_I(); } // rate limit pitch servo SRV_Channels::set_output_scaled(SRV_Channel::k_tracker_pitch, new_servo_out); if (pitch_servo_out_filt_init) { pitch_servo_out_filt.apply(new_servo_out, G_Dt); } else { pitch_servo_out_filt.reset(new_servo_out); pitch_servo_out_filt_init = true; } } /** update the pitch (elevation) servo. The aim is to drive the boards ahrs pitch to the requested pitch, so the board (and therefore the antenna) will be pointing at the target */ void Tracker::update_pitch_onoff_servo(float pitch) { int32_t pitch_min_cd = g.pitch_min*100; int32_t pitch_max_cd = g.pitch_max*100; float acceptable_error = g.onoff_pitch_rate * g.onoff_pitch_mintime; if (fabsf(nav_status.angle_error_pitch) < acceptable_error) { SRV_Channels::set_output_scaled(SRV_Channel::k_tracker_pitch, 0); } else if ((nav_status.angle_error_pitch > 0) && (pitch*100>pitch_min_cd)) { // positive error means we are pointing too low, so push the // servo up SRV_Channels::set_output_scaled(SRV_Channel::k_tracker_pitch, -9000); } else if (pitch*100= yaw_limit_cd) { new_servo_out = yaw_limit_cd; g.pidYaw2Srv.reset_I(); } SRV_Channels::set_output_scaled(SRV_Channel::k_tracker_yaw, new_servo_out); if (yaw_servo_out_filt_init) { yaw_servo_out_filt.apply(new_servo_out, G_Dt); } else { yaw_servo_out_filt.reset(new_servo_out); yaw_servo_out_filt_init = true; } } /** update the yaw (azimuth) servo. The aim is to drive the boards ahrs yaw to the requested yaw, so the board (and therefore the antenna) will be pointing at the target */ void Tracker::update_yaw_onoff_servo(float yaw) { float acceptable_error = g.onoff_yaw_rate * g.onoff_yaw_mintime; if (fabsf(nav_status.angle_error_yaw * 0.01f) < acceptable_error) { SRV_Channels::set_output_scaled(SRV_Channel::k_tracker_yaw, 0); } else if (nav_status.angle_error_yaw * 0.01f > 0) { // positive error means we are counter-clockwise of the target, so // move clockwise SRV_Channels::set_output_scaled(SRV_Channel::k_tracker_yaw, 18000); } else { // negative error means we are clockwise of the target, so // move counter-clockwise SRV_Channels::set_output_scaled(SRV_Channel::k_tracker_yaw, -18000); } } /** update the yaw continuous rotation servo */ void Tracker::update_yaw_cr_servo(float yaw) { g.pidYaw2Srv.set_input_filter_all(nav_status.angle_error_yaw); const float yaw_out = constrain_float(-g.pidYaw2Srv.get_pid(), -g.yaw_range * 100/2, g.yaw_range * 100/2); SRV_Channels::set_output_scaled(SRV_Channel::k_tracker_yaw, yaw_out); }