void init_rc_in() { read_EEPROM_radio(); // read Radio limits rc_1.set_angle(4500); rc_1.dead_zone = 60; rc_2.set_angle(4500); rc_2.dead_zone = 60; rc_3.set_range(0,1000); rc_3.dead_zone = 20; rc_3.scale_output = .9; rc_4.set_angle(6000); rc_4.dead_zone = 500; rc_5.set_range(0,1000); rc_5.set_filter(false); // for kP values //rc_6.set_range(200,800); rc_6.set_range(0,4000); // for camera angles //rc_6.set_angle(4500); //rc_6.dead_zone = 60; rc_7.set_range(0,1000); rc_8.set_range(0,1000); } void init_rc_out() { #if ARM_AT_STARTUP == 1 motor_armed = 1; #endif APM_RC.OutputCh(CH_1, rc_3.radio_min); // Initialization of servo outputs APM_RC.OutputCh(CH_2, rc_3.radio_min); APM_RC.OutputCh(CH_3, rc_3.radio_min); APM_RC.OutputCh(CH_4, rc_3.radio_min); APM_RC.Init(); // APM Radio initialization APM_RC.OutputCh(CH_1, rc_3.radio_min); // Initialization of servo outputs APM_RC.OutputCh(CH_2, rc_3.radio_min); APM_RC.OutputCh(CH_3, rc_3.radio_min); APM_RC.OutputCh(CH_4, rc_3.radio_min); } void read_radio() { rc_1.set_pwm(APM_RC.InputCh(CH_1)); rc_2.set_pwm(APM_RC.InputCh(CH_2)); rc_3.set_pwm(APM_RC.InputCh(CH_3)); rc_4.set_pwm(APM_RC.InputCh(CH_4)); rc_5.set_pwm(APM_RC.InputCh(CH_5)); rc_6.set_pwm(APM_RC.InputCh(CH_6)); rc_7.set_pwm(APM_RC.InputCh(CH_7)); rc_8.set_pwm(APM_RC.InputCh(CH_8)); //Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d \n"), rc_1.control_in, rc_2.control_in, rc_3.control_in, rc_4.control_in); } void trim_radio() { for (byte i = 0; i < 30; i++){ read_radio(); } rc_1.trim(); // roll rc_2.trim(); // pitch rc_4.trim(); // yaw } void trim_yaw() { for (byte i = 0; i < 30; i++){ read_radio(); } rc_4.trim(); // yaw } #define ARM_DELAY 10 #define DISARM_DELAY 10 void arm_motors() { static byte arming_counter; // Arm motor output : Throttle down and full yaw right for more than 2 seconds if (rc_3.control_in == 0){ if (rc_4.control_in > 2700) { if (arming_counter > ARM_DELAY) { motor_armed = true; } else{ arming_counter++; } }else if (rc_4.control_in < -2700) { if (arming_counter > DISARM_DELAY){ motor_armed = false; }else{ arming_counter++; } }else{ arming_counter = 0; } } } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ void set_servos_4(void) { static byte num; // Quadcopter mix if (motor_armed == true) { int out_min = rc_3.radio_min; // Throttle is 0 to 1000 only rc_3.servo_out = constrain(rc_3.servo_out, 0, 1000); if(rc_3.servo_out > 0) out_min = rc_3.radio_min + 50; //Serial.printf("out: %d %d %d %d\t\t", rc_1.servo_out, rc_2.servo_out, rc_3.servo_out, rc_4.servo_out); // creates the radio_out and pwm_out values rc_1.calc_pwm(); rc_2.calc_pwm(); rc_3.calc_pwm(); rc_4.calc_pwm(); //Serial.printf("out: %d %d %d %d\n", rc_1.radio_out, rc_2.radio_out, rc_3.radio_out, rc_4.radio_out); //Serial.printf("yaw: %d ", rc_4.radio_out); if(frame_type == PLUS_FRAME){ motor_out[RIGHT] = rc_3.radio_out - rc_1.pwm_out; motor_out[LEFT] = rc_3.radio_out + rc_1.pwm_out; motor_out[FRONT] = rc_3.radio_out + rc_2.pwm_out; motor_out[BACK] = rc_3.radio_out - rc_2.pwm_out; }else if(frame_type == X_FRAME){ int roll_out = rc_1.pwm_out / 2; int pitch_out = rc_2.pwm_out / 2; motor_out[FRONT] = rc_3.radio_out + roll_out + pitch_out; motor_out[LEFT] = rc_3.radio_out + roll_out - pitch_out; motor_out[RIGHT] = rc_3.radio_out - roll_out + pitch_out; motor_out[BACK] = rc_3.radio_out - roll_out - pitch_out; }else if(frame_type == TRI_FRAME){ // Tri-copter power distribution int roll_out = (float)rc_1.pwm_out * .866; int pitch_out = rc_2.pwm_out / 2; // front two motors motor_out[LEFT] = rc_3.radio_out + roll_out + pitch_out; motor_out[RIGHT] = rc_3.radio_out - roll_out + pitch_out; // rear motors motor_out[BACK] = rc_3.radio_out - rc_2.pwm_out; // servo Yaw //motor_out[FRONT] = rc_4.radio_out; APM_RC.OutputCh(CH_7,rc_4.radio_out); }else{ Serial.print("frame error"); } //Serial.printf("\tb4: %d %d %d %d ", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]); if((frame_type == PLUS_FRAME) || (frame_type == X_FRAME)){ motor_out[RIGHT] += rc_4.pwm_out; motor_out[LEFT] += rc_4.pwm_out; motor_out[FRONT] -= rc_4.pwm_out; motor_out[BACK] -= rc_4.pwm_out; } //Serial.printf("\tl8r: %d %d %d %d\n", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]); motor_out[RIGHT] = constrain(motor_out[RIGHT], out_min, rc_3.radio_max); motor_out[LEFT] = constrain(motor_out[LEFT], out_min, rc_3.radio_max); motor_out[FRONT] = constrain(motor_out[FRONT], out_min, rc_3.radio_max); motor_out[BACK] = constrain(motor_out[BACK], out_min, rc_3.radio_max); /* int r_out = ((long)(motor_out[RIGHT] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min); int l_out = ((long)(motor_out[LEFT] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min); int f_out = ((long)(motor_out[FRONT] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min); int b_out = ((long)(motor_out[BACK] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min); //*/ // /* debugging and dynamic kP num++; if (num > 50){ num = 0; hold_yaw_dampener = (float)rc_6.control_in; //pid_stabilize_roll.kP((float)rc_6.control_in / 1000); //stabilize_rate_roll_pitch = pid_stabilize_roll.kP() *.25; //init_pids(); //Serial.print("nav_yaw: "); //Serial.println(nav_yaw,DEC); //Serial.print("kP: "); //Serial.println(pid_stabilize_roll.kP(),3); } // out: 41 38 39 39 // pwm: 358, 1412 1380 1395 1389 //*/ //Serial.printf("set: %d %d %d %d\n", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]); //Serial.printf("s: %d %d %d\t\t", (int)roll_sensor, (int)pitch_sensor, (int)yaw_sensor); ///Serial.printf("outmin: %d\n", out_min); /* write_int(r_out); write_int(l_out); write_int(f_out); write_int(b_out); write_int((int)(roll_sensor / 100)); write_int((int)(pitch_sensor / 100)); write_int((int)(yaw_sensor / 100)); write_int((int)(yaw_error / 100)); write_int((int)(current_loc.alt)); write_int((int)(altitude_error)); flush(10); //*/ // Send commands to motors if(rc_3.servo_out > 0){ APM_RC.OutputCh(CH_1, motor_out[RIGHT]); APM_RC.OutputCh(CH_2, motor_out[LEFT]); APM_RC.OutputCh(CH_3, motor_out[FRONT]); APM_RC.OutputCh(CH_4, motor_out[BACK]); }else{ APM_RC.OutputCh(CH_1, rc_3.radio_min); APM_RC.OutputCh(CH_2, rc_3.radio_min); APM_RC.OutputCh(CH_3, rc_3.radio_min); APM_RC.OutputCh(CH_4, rc_3.radio_min); } // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); }else{ // Send commands to motors APM_RC.OutputCh(CH_1, rc_3.radio_min); APM_RC.OutputCh(CH_2, rc_3.radio_min); APM_RC.OutputCh(CH_3, rc_3.radio_min); APM_RC.OutputCh(CH_4, rc_3.radio_min); // reset I terms of PID controls reset_I(); // Initialize yaw command to actual yaw when throttle is down... rc_4.control_in = ToDeg(yaw); } }