#include #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO #include "GPIO.h" #include #include #include #include #include #include #include #include #include using namespace Linux; static const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER; LinuxGPIO_RPI::LinuxGPIO_RPI() {} void LinuxGPIO_RPI::init() { // open /dev/mem if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) { hal.scheduler->panic("Can't open /dev/mem"); } // mmap GPIO gpio_map = mmap( NULL, // Any adddress in our space will do BLOCK_SIZE, // Map length PROT_READ|PROT_WRITE, // Enable reading & writting to mapped memory MAP_SHARED, // Shared with other processes mem_fd, // File to map GPIO_BASE // Offset to GPIO peripheral ); close(mem_fd); // No need to keep mem_fd open after mmap if (gpio_map == MAP_FAILED) { hal.scheduler->panic("Can't open /dev/mem"); } gpio = (volatile uint32_t *)gpio_map; // Always use volatile pointer! } void LinuxGPIO_RPI::pinMode(uint8_t pin, uint8_t output) { if (output == HAL_GPIO_INPUT) { GPIO_MODE_IN(pin); } else { GPIO_MODE_IN(pin); GPIO_MODE_OUT(pin); } } int8_t LinuxGPIO_RPI::analogPinToDigitalPin(uint8_t pin) { return -1; } uint8_t LinuxGPIO_RPI::read(uint8_t pin) { uint32_t value = GPIO_GET(pin); return value ? 1: 0; } void LinuxGPIO_RPI::write(uint8_t pin, uint8_t value) { if (value == LOW) { GPIO_SET_LOW = 1 << pin; } else { GPIO_SET_HIGH = 1 << pin; } } void LinuxGPIO_RPI::toggle(uint8_t pin) { write(pin, !read(pin)); } /* Alternative interface: */ AP_HAL::DigitalSource* LinuxGPIO_RPI::channel(uint16_t n) { return new LinuxDigitalSource(n); } /* Interrupt interface: */ bool LinuxGPIO_RPI::attach_interrupt(uint8_t interrupt_num, AP_HAL::Proc p, uint8_t mode) { return true; } bool LinuxGPIO_RPI::usb_connected(void) { return false; } #endif // CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO