#include "Rover.h" /** * * Detects failures of the ekf and triggers a failsafe * */ #ifndef EKF_CHECK_ITERATIONS_MAX # define EKF_CHECK_ITERATIONS_MAX 10 // 1 second (ie. 10 iterations at 10hz) of bad variances signals a failure #endif #ifndef EKF_CHECK_WARNING_TIME # define EKF_CHECK_WARNING_TIME (30*1000) // warning text messages are sent to ground no more than every 30 seconds #endif // EKF_check structure static struct { uint8_t fail_count; // number of iterations ekf or dcm have been out of tolerances uint8_t bad_variance : 1; // true if ekf should be considered untrusted (fail_count has exceeded EKF_CHECK_ITERATIONS_MAX) uint32_t last_warn_time; // system time of last warning in milliseconds. Used to throttle text warnings sent to GCS } ekf_check_state; // ekf_check - detects if ekf variance are out of tolerance and triggers failsafe // should be called at 10hz void Rover::ekf_check() { // exit immediately if ekf has no origin yet - this assumes the origin can never become unset Location temp_loc; if (!ahrs.get_origin(temp_loc)) { return; } // return immediately if motors are not armed, or ekf check is disabled if (!arming.is_armed() || (g.fs_ekf_thresh <= 0.0f)) { ekf_check_state.fail_count = 0; ekf_check_state.bad_variance = false; AP_Notify::flags.ekf_bad = ekf_check_state.bad_variance; failsafe_ekf_off_event(); // clear failsafe return; } // compare compass and velocity variance vs threshold if (ekf_over_threshold()) { // if compass is not yet flagged as bad if (!ekf_check_state.bad_variance) { // increase counter ekf_check_state.fail_count++; // if counter above max then trigger failsafe if (ekf_check_state.fail_count >= EKF_CHECK_ITERATIONS_MAX) { // limit count from climbing too high ekf_check_state.fail_count = EKF_CHECK_ITERATIONS_MAX; ekf_check_state.bad_variance = true; AP::logger().Write_Error(LogErrorSubsystem::EKFCHECK, LogErrorCode::EKFCHECK_BAD_VARIANCE); // send message to gcs if ((AP_HAL::millis() - ekf_check_state.last_warn_time) > EKF_CHECK_WARNING_TIME) { gcs().send_text(MAV_SEVERITY_CRITICAL,"EKF variance"); ekf_check_state.last_warn_time = AP_HAL::millis(); } failsafe_ekf_event(); } } } else { // reduce counter if (ekf_check_state.fail_count > 0) { ekf_check_state.fail_count--; // if variance is flagged as bad and the counter reaches zero then clear flag if (ekf_check_state.bad_variance && ekf_check_state.fail_count == 0) { ekf_check_state.bad_variance = false; AP::logger().Write_Error(LogErrorSubsystem::EKFCHECK, LogErrorCode::EKFCHECK_VARIANCE_CLEARED); // clear failsafe failsafe_ekf_off_event(); } } } // set AP_Notify flags AP_Notify::flags.ekf_bad = ekf_check_state.bad_variance; } // returns true if the ekf's variance are over the tolerance bool Rover::ekf_over_threshold() { // return false immediately if disabled if (g.fs_ekf_thresh <= 0.0f) { return false; } // use EKF to get variance float position_variance, vel_variance, height_variance, tas_variance; Vector3f mag_variance; Vector2f offset; ahrs.get_variances(vel_variance, position_variance, height_variance, mag_variance, tas_variance, offset); // return true if two of compass, velocity and position variances are over the threshold uint8_t over_thresh_count = 0; if (mag_variance.length() >= g.fs_ekf_thresh) { over_thresh_count++; } if (vel_variance >= g.fs_ekf_thresh) { over_thresh_count++; } if (position_variance >= g.fs_ekf_thresh) { over_thresh_count++; } if (over_thresh_count >= 2) { return true; } if (ekf_position_ok()) { return false; } return true; } // ekf_position_ok - returns true if the ekf claims it's horizontal absolute position estimate is ok and home position is set bool Rover::ekf_position_ok() { if (!ahrs.have_inertial_nav()) { // do not allow navigation with dcm position return false; } // get EKF filter status nav_filter_status filt_status; rover.ahrs.get_filter_status(filt_status); // if disarmed we accept a predicted horizontal absolute or relative position if (!arming.is_armed()) { return (filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs || filt_status.flags.horiz_pos_rel || filt_status.flags.pred_horiz_pos_rel); } else { // once armed we require a good absolute or relative position and EKF must not be in const_pos_mode return ((filt_status.flags.horiz_pos_abs || filt_status.flags.horiz_pos_rel) && !filt_status.flags.const_pos_mode); } } // perform ekf failsafe void Rover::failsafe_ekf_event() { // return immediately if ekf failsafe already triggered if (failsafe.ekf) { return; } // EKF failsafe event has occurred failsafe.ekf = true; AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_EKFINAV, LogErrorCode::FAILSAFE_OCCURRED); gcs().send_text(MAV_SEVERITY_CRITICAL,"EKF failsafe!"); // does this mode require position? if (!control_mode->requires_position()) { return; } // take action based on fs_ekf_action parameter switch ((enum fs_ekf_action)g.fs_ekf_action.get()) { case FS_EKF_DISABLE: // do nothing break; case FS_EFK_HOLD: default: set_mode(mode_hold, MODE_REASON_EKF_FAILSAFE); break; } } // failsafe_ekf_off_event - actions to take when EKF failsafe is cleared void Rover::failsafe_ekf_off_event(void) { // return immediately if not in ekf failsafe if (!failsafe.ekf) { return; } failsafe.ekf = false; AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_EKFINAV, LogErrorCode::FAILSAFE_RESOLVED); gcs().send_text(MAV_SEVERITY_CRITICAL,"EKF failsafe cleared"); }