/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * control_acro.pde - init and run calls for acro flight mode */ // acro_init - initialise acro controller static bool acro_init(bool ignore_checks) { // always successfully enter acro return true; } // acro_run - runs the acro controller // should be called at 100hz or more static void acro_run() { float target_roll, target_pitch, target_yaw; int16_t pilot_throttle_scaled; // if motors not running reset angle targets if(!motors.armed() || g.rc_3.control_in <= 0) { attitude_control.relax_bf_rate_controller(); attitude_control.set_throttle_out(0, false); return; } // convert the input to the desired body frame rate get_pilot_desired_angle_rates(g.rc_1.control_in, g.rc_2.control_in, g.rc_4.control_in, target_roll, target_pitch, target_yaw); // get pilot's desired throttle pilot_throttle_scaled = get_pilot_desired_throttle(g.rc_3.control_in); // run attitude controller attitude_control.rate_bf_roll_pitch_yaw(target_roll, target_pitch, target_yaw); // output pilot's throttle without angle boost attitude_control.set_throttle_out(pilot_throttle_scaled, false); } // get_pilot_desired_angle_rates - transform pilot's roll pitch and yaw input into a desired lean angle rates // returns desired angle rates in centi-degrees-per-second static void get_pilot_desired_angle_rates(int16_t roll_in, int16_t pitch_in, int16_t yaw_in, float &roll_out, float &pitch_out, float &yaw_out) { // Calculate trainer mode earth frame rate command for roll float rate_limit; Vector3f rate_ef_level, rate_bf_level, rate_bf_request; // calculate rate requests rate_bf_request.x = roll_in * g.acro_rp_p; rate_bf_request.y = pitch_in * g.acro_rp_p; rate_bf_request.z = yaw_in * g.acro_yaw_p; // calculate earth frame rate corrections to pull the copter back to level while in ACRO mode if (g.acro_trainer != ACRO_TRAINER_DISABLED) { // Calculate trainer mode earth frame rate command for roll int32_t roll_angle = wrap_180_cd(ahrs.roll_sensor); rate_ef_level.x = -constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_roll; // Calculate trainer mode earth frame rate command for pitch int32_t pitch_angle = wrap_180_cd(ahrs.pitch_sensor); rate_ef_level.y = -constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_pitch; // Calculate trainer mode earth frame rate command for yaw rate_ef_level.z = 0; // Calculate angle limiting earth frame rate commands if (g.acro_trainer == ACRO_TRAINER_LIMITED) { if (roll_angle > aparm.angle_max){ rate_ef_level.x -= g.acro_rp_p*(roll_angle-aparm.angle_max); }else if (roll_angle < -aparm.angle_max) { rate_ef_level.x -= g.acro_rp_p*(roll_angle+aparm.angle_max); } if (pitch_angle > aparm.angle_max){ rate_ef_level.y -= g.acro_rp_p*(pitch_angle-aparm.angle_max); }else if (pitch_angle < -aparm.angle_max) { rate_ef_level.y -= g.acro_rp_p*(pitch_angle+aparm.angle_max); } } // convert earth-frame level rates to body-frame level rates attitude_control.frame_conversion_ef_to_bf(rate_ef_level, rate_bf_level); // combine earth frame rate corrections with rate requests if (g.acro_trainer == ACRO_TRAINER_LIMITED) { rate_bf_request.x += rate_bf_level.x; rate_bf_request.y += rate_bf_level.y; rate_bf_request.z += rate_bf_level.z; }else{ acro_level_mix = constrain_float(1-max(max(abs(roll_in), abs(pitch_in)), abs(yaw_in))/4500.0, 0, 1)*ahrs.cos_pitch(); // Scale leveling rates by stick input rate_bf_level = rate_bf_level*acro_level_mix; // Calculate rate limit to prevent change of rate through inverted rate_limit = fabs(fabs(rate_bf_request.x)-fabs(rate_bf_level.x)); rate_bf_request.x += rate_bf_level.x; rate_bf_request.x = constrain_float(rate_bf_request.x, -rate_limit, rate_limit); // Calculate rate limit to prevent change of rate through inverted rate_limit = fabs(fabs(rate_bf_request.y)-fabs(rate_bf_level.y)); rate_bf_request.y += rate_bf_level.y; rate_bf_request.y = constrain_float(rate_bf_request.y, -rate_limit, rate_limit); // Calculate rate limit to prevent change of rate through inverted rate_limit = fabs(fabs(rate_bf_request.z)-fabs(rate_bf_level.z)); rate_bf_request.z += rate_bf_level.z; rate_bf_request.z = constrain_float(rate_bf_request.z, -rate_limit, rate_limit); } } // hand back rate request roll_out = rate_bf_request.x; pitch_out = rate_bf_request.y; yaw_out = rate_bf_request.z; }