/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* APM_MS5611.cpp - Arduino Library for MS5611-01BA01 absolute pressure sensor
* Code by Jose Julio, Pat Hickey and Jordi Muñoz. DIYDrones.com
*
* Sensor is conected to standard SPI port
* Chip Select pin: Analog2 (provisional until Jordi defines the pin)!!
*
* Variables:
* Temp : Calculated temperature (in Celsius degrees)
* Press : Calculated pressure (in mbar units * 100)
*
*
* Methods:
* init() : Initialization and sensor reset
* read() : Read sensor data and _calculate Temperature, Pressure
* This function is optimized so the main host don´t need to wait
* You can call this function in your main loop
* Maximum data output frequency 100Hz - this allows maximum oversampling in the chip ADC
* It returns a 1 if there are new data.
* get_pressure() : return pressure in mbar*100 units
* get_temperature() : return temperature in celsius degrees*100 units
*
* Internal functions:
* _calculate() : Calculate Temperature and Pressure (temperature compensated) in real units
*
*
*/
#include
#include "AP_Baro_MS5611.h"
extern const AP_HAL::HAL& hal;
#define CMD_MS5611_RESET 0x1E
#define CMD_MS5611_PROM_Setup 0xA0
#define CMD_MS5611_PROM_C1 0xA2
#define CMD_MS5611_PROM_C2 0xA4
#define CMD_MS5611_PROM_C3 0xA6
#define CMD_MS5611_PROM_C4 0xA8
#define CMD_MS5611_PROM_C5 0xAA
#define CMD_MS5611_PROM_C6 0xAC
#define CMD_MS5611_PROM_CRC 0xAE
#define CMD_CONVERT_D1_OSR4096 0x48 // Maximum resolution (oversampling)
#define CMD_CONVERT_D2_OSR4096 0x58 // Maximum resolution (oversampling)
uint32_t volatile AP_Baro_MS5611::_s_D1;
uint32_t volatile AP_Baro_MS5611::_s_D2;
uint8_t volatile AP_Baro_MS5611::_d1_count;
uint8_t volatile AP_Baro_MS5611::_d2_count;
uint8_t AP_Baro_MS5611::_state;
uint32_t AP_Baro_MS5611::_timer;
bool volatile AP_Baro_MS5611::_updated;
AP_Baro_MS5611_Serial* AP_Baro_MS5611::_serial = NULL;
AP_Baro_MS5611_SPI AP_Baro_MS5611::spi;
#if MS5611_WITH_I2C
AP_Baro_MS5611_I2C AP_Baro_MS5611::i2c;
#endif
// SPI Device //////////////////////////////////////////////////////////////////
void AP_Baro_MS5611_SPI::init()
{
_spi = hal.spi->device(AP_HAL::SPIDevice_MS5611);
if (_spi == NULL) {
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 did not get "
"valid SPI device driver!"));
return; /* never reached */
}
_spi_sem = _spi->get_semaphore();
if (_spi_sem == NULL) {
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 did not get "
"valid SPI semaphroe!"));
return; /* never reached */
}
// now that we have initialised, we set the SPI bus speed to high
// (8MHz on APM2)
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
}
uint16_t AP_Baro_MS5611_SPI::read_16bits(uint8_t reg)
{
uint8_t tx[3];
uint8_t rx[3];
tx[0] = reg; tx[1] = 0; tx[2] = 0;
_spi->transaction(tx, rx, 3);
return ((uint16_t) rx[1] << 8 ) | ( rx[2] );
}
uint32_t AP_Baro_MS5611_SPI::read_adc()
{
uint8_t tx[4];
uint8_t rx[4];
memset(tx, 0, 4); /* first byte is addr = 0 */
_spi->transaction(tx, rx, 4);
return (((uint32_t)rx[1])<<16) | (((uint32_t)rx[2])<<8) | ((uint32_t)rx[3]);
}
void AP_Baro_MS5611_SPI::write(uint8_t reg)
{
uint8_t tx[1];
tx[0] = reg;
_spi->transaction(tx, NULL, 1);
}
bool AP_Baro_MS5611_SPI::sem_take_blocking() {
return _spi_sem->take(10);
}
bool AP_Baro_MS5611_SPI::sem_take_nonblocking()
{
/**
* Take nonblocking from a TimerProcess context &
* monitor for bad failures
*/
static int semfail_ctr = 0;
bool got = _spi_sem->take_nonblocking();
if (!got) {
if (!hal.scheduler->system_initializing()) {
semfail_ctr++;
if (semfail_ctr > 100) {
hal.scheduler->panic(PSTR("PANIC: failed to take _spi_sem "
"100 times in a row, in "
"AP_Baro_MS5611::_update"));
}
}
return false; /* never reached */
} else {
semfail_ctr = 0;
}
return got;
}
void AP_Baro_MS5611_SPI::sem_give()
{
_spi_sem->give();
}
// I2C Device //////////////////////////////////////////////////////////////////
#if MS5611_WITH_I2C
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO
#define MS5611_ADDR 0x77
#else
#define MS5611_ADDR 0x76 /** I2C address of the MS5611 on the PX4 board. */
#endif
void AP_Baro_MS5611_I2C::init()
{
_i2c_sem = hal.i2c->get_semaphore();
if (_i2c_sem == NULL) {
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 did not get "
"valid I2C semaphroe!"));
return; /* never reached */
}
}
uint16_t AP_Baro_MS5611_I2C::read_16bits(uint8_t reg)
{
uint8_t buf[2];
if (hal.i2c->readRegisters(MS5611_ADDR, reg, sizeof(buf), buf) == 0)
return (((uint16_t)(buf[0]) << 8) | buf[1]);
return 0;
}
uint32_t AP_Baro_MS5611_I2C::read_adc()
{
uint8_t buf[3];
if (hal.i2c->readRegisters(MS5611_ADDR, 0x00, sizeof(buf), buf) == 0)
return (((uint32_t)buf[0]) << 16) | (((uint32_t)buf[1]) << 8) | buf[2];
return 0;
}
void AP_Baro_MS5611_I2C::write(uint8_t reg)
{
hal.i2c->write(MS5611_ADDR, 1, ®);
}
bool AP_Baro_MS5611_I2C::sem_take_blocking() {
return _i2c_sem->take(10);
}
bool AP_Baro_MS5611_I2C::sem_take_nonblocking()
{
/**
* Take nonblocking from a TimerProcess context &
* monitor for bad failures
*/
static int semfail_ctr = 0;
bool got = _i2c_sem->take_nonblocking();
if (!got) {
if (!hal.scheduler->system_initializing()) {
semfail_ctr++;
if (semfail_ctr > 100) {
hal.scheduler->panic(PSTR("PANIC: failed to take _i2c_sem "
"100 times in a row, in "
"AP_Baro_MS5611::_update"));
}
}
return false; /* never reached */
} else {
semfail_ctr = 0;
}
return got;
}
void AP_Baro_MS5611_I2C::sem_give()
{
_i2c_sem->give();
}
#endif // MS5611_WITH_I2C
// Public Methods //////////////////////////////////////////////////////////////
#if CONFIG_HAL_BOARD != HAL_BOARD_APM2
/**
* MS5611 crc4 method based on PX4Firmware code
*/
bool AP_Baro_MS5611::check_crc(void)
{
int16_t cnt;
uint16_t n_rem;
uint16_t crc_read;
uint8_t n_bit;
uint16_t n_prom[8] = { _serial->read_16bits(CMD_MS5611_PROM_Setup),
C1, C2, C3, C4, C5, C6,
_serial->read_16bits(CMD_MS5611_PROM_CRC) };
n_rem = 0x00;
/* save the read crc */
crc_read = n_prom[7];
/* remove CRC byte */
n_prom[7] = (0xFF00 & (n_prom[7]));
for (cnt = 0; cnt < 16; cnt++) {
/* uneven bytes */
if (cnt & 1) {
n_rem ^= (uint8_t)((n_prom[cnt >> 1]) & 0x00FF);
} else {
n_rem ^= (uint8_t)(n_prom[cnt >> 1] >> 8);
}
for (n_bit = 8; n_bit > 0; n_bit--) {
if (n_rem & 0x8000) {
n_rem = (n_rem << 1) ^ 0x3000;
} else {
n_rem = (n_rem << 1);
}
}
}
/* final 4 bit remainder is CRC value */
n_rem = (0x000F & (n_rem >> 12));
n_prom[7] = crc_read;
/* return true if CRCs match */
return (0x000F & crc_read) == (n_rem ^ 0x00);
}
#endif
// SPI should be initialized externally
bool AP_Baro_MS5611::init()
{
if (_serial == NULL) {
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611: NULL serial driver"));
return false; /* never reached */
}
_serial->init();
if (!_serial->sem_take_blocking()){
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611: failed to take "
"serial semaphore for init"));
return false; /* never reached */
}
_serial->write(CMD_MS5611_RESET);
hal.scheduler->delay(4);
// We read the factory calibration
// The on-chip CRC is not used
C1 = _serial->read_16bits(CMD_MS5611_PROM_C1);
C2 = _serial->read_16bits(CMD_MS5611_PROM_C2);
C3 = _serial->read_16bits(CMD_MS5611_PROM_C3);
C4 = _serial->read_16bits(CMD_MS5611_PROM_C4);
C5 = _serial->read_16bits(CMD_MS5611_PROM_C5);
C6 = _serial->read_16bits(CMD_MS5611_PROM_C6);
// if not on APM2 then check CRC
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_75
if (!check_crc()) {
hal.scheduler->panic("Bad CRC on MS5611");
}
#endif
//Send a command to read Temp first
_serial->write(CMD_CONVERT_D2_OSR4096);
_timer = hal.scheduler->micros();
_state = 0;
Temp=0;
Press=0;
_s_D1 = 0;
_s_D2 = 0;
_d1_count = 0;
_d2_count = 0;
hal.scheduler->register_timer_process( AP_HAL_MEMBERPROC(&AP_Baro_MS5611::_update));
_serial->sem_give();
// wait for at least one value to be read
uint32_t tstart = hal.scheduler->millis();
while (!_updated) {
hal.scheduler->delay(10);
if (hal.scheduler->millis() - tstart > 1000) {
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 took more than "
"1000ms to initialize"));
_flags.healthy = false;
return false;
}
}
_flags.healthy = true;
return true;
}
// Read the sensor. This is a state machine
// We read one time Temperature (state=1) and then 4 times Pressure (states 2-5)
// temperature does not change so quickly...
void AP_Baro_MS5611::_update(void)
{
// Throttle read rate to 100hz maximum.
if (hal.scheduler->micros() - _timer < 10000) {
return;
}
if (!_serial->sem_take_nonblocking()) {
return;
}
if (_state == 0) {
// On state 0 we read temp
uint32_t d2 = _serial->read_adc();
if (d2 != 0) {
_s_D2 += d2;
_d2_count++;
if (_d2_count == 32) {
// we have summed 32 values. This only happens
// when we stop reading the barometer for a long time
// (more than 1.2 seconds)
_s_D2 >>= 1;
_d2_count = 16;
}
}
_state++;
_serial->write(CMD_CONVERT_D1_OSR4096); // Command to read pressure
} else {
uint32_t d1 = _serial->read_adc();;
if (d1 != 0) {
// occasional zero values have been seen on the PXF
// board. These may be SPI errors, but safest to ignore
_s_D1 += d1;
_d1_count++;
if (_d1_count == 128) {
// we have summed 128 values. This only happens
// when we stop reading the barometer for a long time
// (more than 1.2 seconds)
_s_D1 >>= 1;
_d1_count = 64;
}
// Now a new reading exists
_updated = true;
}
_state++;
if (_state == 5) {
_serial->write(CMD_CONVERT_D2_OSR4096); // Command to read temperature
_state = 0;
} else {
_serial->write(CMD_CONVERT_D1_OSR4096); // Command to read pressure
}
}
_timer = hal.scheduler->micros();
_serial->sem_give();
}
uint8_t AP_Baro_MS5611::read()
{
bool updated = _updated;
if (updated) {
uint32_t sD1, sD2;
uint8_t d1count, d2count;
// Suspend timer procs because these variables are written to
// in "_update".
hal.scheduler->suspend_timer_procs();
sD1 = _s_D1; _s_D1 = 0;
sD2 = _s_D2; _s_D2 = 0;
d1count = _d1_count; _d1_count = 0;
d2count = _d2_count; _d2_count = 0;
_updated = false;
hal.scheduler->resume_timer_procs();
if (d1count != 0) {
D1 = ((float)sD1) / d1count;
}
if (d2count != 0) {
D2 = ((float)sD2) / d2count;
}
_pressure_samples = d1count;
_raw_press = D1;
_raw_temp = D2;
}
_calculate();
if (updated) {
_last_update = hal.scheduler->millis();
}
return updated ? 1 : 0;
}
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100).
void AP_Baro_MS5611::_calculate()
{
float dT;
float TEMP;
float OFF;
float SENS;
float P;
// Formulas from manufacturer datasheet
// sub -20c temperature compensation is not included
// we do the calculations using floating point
// as this is much faster on an AVR2560, and also allows
// us to take advantage of the averaging of D1 and D1 over
// multiple samples, giving us more precision
dT = D2-(((uint32_t)C5)<<8);
TEMP = (dT * C6)/8388608;
OFF = C2 * 65536.0f + (C4 * dT) / 128;
SENS = C1 * 32768.0f + (C3 * dT) / 256;
if (TEMP < 0) {
// second order temperature compensation when under 20 degrees C
float T2 = (dT*dT) / 0x80000000;
float Aux = TEMP*TEMP;
float OFF2 = 2.5f*Aux;
float SENS2 = 1.25f*Aux;
TEMP = TEMP - T2;
OFF = OFF - OFF2;
SENS = SENS - SENS2;
}
P = (D1*SENS/2097152 - OFF)/32768;
Temp = (TEMP + 2000) * 0.01f;
Press = P;
}
float AP_Baro_MS5611::get_pressure()
{
return Press;
}
float AP_Baro_MS5611::get_temperature() const
{
// temperature in degrees C units
return Temp;
}