#include "Blimp.h" /***************************************************************************** * The init_ardupilot function processes everything we need for an in - air restart * We will determine later if we are actually on the ground and process a * ground start in that case. * *****************************************************************************/ static void failsafe_check_static() { blimp.failsafe_check(); } void Blimp::init_ardupilot() { #if STATS_ENABLED == ENABLED // initialise stats module g2.stats.init(); #endif BoardConfig.init(); // initialise notify system notify.init(); notify_flight_mode(); // initialise battery monitor battery.init(); // Init RSSI rssi.init(); barometer.init(); // setup telem slots with serial ports gcs().setup_uarts(); #if LOGGING_ENABLED == ENABLED log_init(); #endif // update motor interlock state // update_using_interlock(); init_rc_in(); // sets up rc channels from radio // allocate the motors class allocate_motors(); // initialise rc channels including setting mode rc().init(); // sets up motors and output to escs init_rc_out(); // motors initialised so parameters can be sent ap.initialised_params = true; relay.init(); /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); // Do GPS init gps.set_log_gps_bit(MASK_LOG_GPS); gps.init(serial_manager); AP::compass().set_log_bit(MASK_LOG_COMPASS); AP::compass().init(); // attitude_control->parameter_sanity_check(); // pos_control->set_dt(scheduler.get_loop_period_s()); #if HIL_MODE != HIL_MODE_DISABLED while (barometer.get_last_update() == 0) { // the barometer begins updating when we get the first // HIL_STATE message gcs().send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message"); delay(1000); } // set INS to HIL mode ins.set_hil_mode(); #endif // read Baro pressure at ground //----------------------------- barometer.set_log_baro_bit(MASK_LOG_IMU); barometer.calibrate(); // #if MODE_AUTO_ENABLED == ENABLED // // initialise mission library // mode_auto.mission.init(); // #endif // initialise AP_Logger library logger.setVehicle_Startup_Writer(FUNCTOR_BIND(&blimp, &Blimp::Log_Write_Vehicle_Startup_Messages, void)); startup_INS_ground(); #ifdef ENABLE_SCRIPTING g2.scripting.init(); #endif // ENABLE_SCRIPTING // set landed flags // set_land_complete(true); // set_land_complete_maybe(true); // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we are // ready to fly serial_manager.set_blocking_writes_all(false); // enable CPU failsafe // failsafe_enable(); ins.set_log_raw_bit(MASK_LOG_IMU_RAW); // setup fin output motors->setup_fins(); // enable output to motors if (arming.rc_calibration_checks(true)) { enable_motor_output(); } // attempt to switch to MANUAL, if this fails then switch to Land if (!set_mode((enum Mode::Number)g.initial_mode.get(), ModeReason::INITIALISED)) { // set mode to MANUAL will trigger mode change notification to pilot set_mode(Mode::Number::MANUAL, ModeReason::UNAVAILABLE); } else { // alert pilot to mode change AP_Notify::events.failsafe_mode_change = 1; } // flag that initialisation has completed ap.initialised = true; } //****************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //****************************************************************************** void Blimp::startup_INS_ground() { // initialise ahrs (may push imu calibration into the mpu6000 if using that device). ahrs.init(); ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER); // Warm up and calibrate gyro offsets ins.init(scheduler.get_loop_rate_hz()); // reset ahrs including gyro bias ahrs.reset(); } // position_ok - returns true if the horizontal absolute position is ok and home position is set bool Blimp::position_ok() const { // return false if ekf failsafe has triggered if (failsafe.ekf) { return false; } // check ekf position estimate return (ekf_has_absolute_position() || ekf_has_relative_position()); } // ekf_has_absolute_position - returns true if the EKF can provide an absolute WGS-84 position estimate bool Blimp::ekf_has_absolute_position() const { if (!ahrs.have_inertial_nav()) { // do not allow navigation with dcm position return false; } // with EKF use filter status and ekf check nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal position if (!motors->armed()) { return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs)); } else { // once armed we require a good absolute position and EKF must not be in const_pos_mode return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode); } } // ekf_has_relative_position - returns true if the EKF can provide a position estimate relative to it's starting position bool Blimp::ekf_has_relative_position() const { // return immediately if EKF not used if (!ahrs.have_inertial_nav()) { return false; } // return immediately if neither optflow nor visual odometry is enabled bool enabled = false; // #if OPTFLOW == ENABLED // if (optflow.enabled()) { // enabled = true; // } // #endif // #if HAL_VISUALODOM_ENABLED // if (visual_odom.enabled()) { // enabled = true; // } // #endif if (!enabled) { return false; } // get filter status from EKF nav_filter_status filt_status = inertial_nav.get_filter_status(); // if disarmed we accept a predicted horizontal relative position if (!motors->armed()) { return (filt_status.flags.pred_horiz_pos_rel); } else { return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode); } } // returns true if the ekf has a good altitude estimate (required for modes which do AltHold) bool Blimp::ekf_alt_ok() const { if (!ahrs.have_inertial_nav()) { // do not allow alt control with only dcm return false; } // with EKF use filter status and ekf check nav_filter_status filt_status = inertial_nav.get_filter_status(); // require both vertical velocity and position return (filt_status.flags.vert_vel && filt_status.flags.vert_pos); } // update_auto_armed - update status of auto_armed flag void Blimp::update_auto_armed() { // disarm checks if (ap.auto_armed) { // if motors are disarmed, auto_armed should also be false if (!motors->armed()) { set_auto_armed(false); return; } // if in stabilize or acro flight mode and throttle is zero, auto-armed should become false if (flightmode->has_manual_throttle() && ap.throttle_zero && !failsafe.radio) { set_auto_armed(false); } // if heliblimps are on the ground, and the motor is switched off, auto-armed should be false // so that rotor runup is checked again before attempting to take-off if (ap.land_complete && motors->get_spool_state() != Fins::SpoolState::THROTTLE_UNLIMITED && ap.using_interlock) { set_auto_armed(false); } } else { // arm checks // // for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true // if(motors->armed() && ap.using_interlock) { // if(!ap.throttle_zero && motors->get_spool_state() == Fins::SpoolState::THROTTLE_UNLIMITED) { // set_auto_armed(true); // } // // if motors are armed and throttle is above zero auto_armed should be true // // if motors are armed and we are in throw mode, then auto_armed should be true // } else if (motors->armed() && !ap.using_interlock) { // if(!ap.throttle_zero) { // set_auto_armed(true); // } // } } } /* should we log a message type now? */ bool Blimp::should_log(uint32_t mask) { #if LOGGING_ENABLED == ENABLED ap.logging_started = logger.logging_started(); return logger.should_log(mask); #else return false; #endif } // return MAV_TYPE corresponding to frame class MAV_TYPE Blimp::get_frame_mav_type() { return MAV_TYPE_QUADROTOR; //MIR changed to this for now - will need to deal with mavlink changes later } // return string corresponding to frame_class const char* Blimp::get_frame_string() { return "AIRFISH"; } /* allocate the motors class */ void Blimp::allocate_motors(void) { switch ((Fins::motor_frame_class)g2.frame_class.get()) { case Fins::MOTOR_FRAME_AIRFISH: default: motors = new Fins(blimp.scheduler.get_loop_rate_hz()); break; } if (motors == nullptr) { AP_HAL::panic("Unable to allocate FRAME_CLASS=%u", (unsigned)g2.frame_class.get()); } AP_Param::load_object_from_eeprom(motors, Fins::var_info); // const struct AP_Param::GroupInfo *ac_var_info; // attitude_control = new AC_AttitudeControl_Multi(*ahrs_view, aparm, *motors, scheduler.get_loop_period_s()); // ac_var_info = AC_AttitudeControl_Multi::var_info; // if (attitude_control == nullptr) { // AP_HAL::panic("Unable to allocate AttitudeControl"); // } // AP_Param::load_object_from_eeprom(attitude_control, ac_var_info); // pos_control = new AC_PosControl(*ahrs_view, inertial_nav, *motors, *attitude_control); // if (pos_control == nullptr) { // AP_HAL::panic("Unable to allocate PosControl"); // } // AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info); // wp_nav = new AC_WPNav(inertial_nav, *ahrs_view, *pos_control, *attitude_control); // if (wp_nav == nullptr) { // AP_HAL::panic("Unable to allocate WPNav"); // } // AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info); // loiter_nav = new AC_Loiter(inertial_nav, *ahrs_view, *pos_control, *attitude_control); // if (loiter_nav == nullptr) { // AP_HAL::panic("Unable to allocate LoiterNav"); // } // AP_Param::load_object_from_eeprom(loiter_nav, loiter_nav->var_info); // reload lines from the defaults file that may now be accessible AP_Param::reload_defaults_file(true); // param count could have changed AP_Param::invalidate_count(); }