#include #include #include #include "AC_PrecLand.h" #include "AC_PrecLand_Backend.h" #include "AC_PrecLand_Companion.h" #include "AC_PrecLand_IRLock.h" #include "AC_PrecLand_SITL_Gazebo.h" #include "AC_PrecLand_SITL.h" #include extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AC_PrecLand::var_info[] = { // @Param: ENABLED // @DisplayName: Precision Land enabled/disabled and behaviour // @Description: Precision Land enabled/disabled and behaviour // @Values: 0:Disabled, 1:Enabled // @User: Advanced AP_GROUPINFO_FLAGS("ENABLED", 0, AC_PrecLand, _enabled, 0, AP_PARAM_FLAG_ENABLE), // @Param: TYPE // @DisplayName: Precision Land Type // @Description: Precision Land Type // @Values: 0:None, 1:CompanionComputer, 2:IRLock, 3:SITL_Gazebo, 4:SITL // @User: Advanced AP_GROUPINFO("TYPE", 1, AC_PrecLand, _type, 0), // @Param: YAW_ALIGN // @DisplayName: Sensor yaw alignment // @Description: Yaw angle from body x-axis to sensor x-axis. // @Range: 0 360 // @Increment: 1 // @User: Advanced // @Units: cdeg AP_GROUPINFO("YAW_ALIGN", 2, AC_PrecLand, _yaw_align, 0), // @Param: LAND_OFS_X // @DisplayName: Land offset forward // @Description: Desired landing position of the camera forward of the target in vehicle body frame // @Range: -20 20 // @Increment: 1 // @User: Advanced // @Units: cm AP_GROUPINFO("LAND_OFS_X", 3, AC_PrecLand, _land_ofs_cm_x, 0), // @Param: LAND_OFS_Y // @DisplayName: Land offset right // @Description: desired landing position of the camera right of the target in vehicle body frame // @Range: -20 20 // @Increment: 1 // @User: Advanced // @Units: cm AP_GROUPINFO("LAND_OFS_Y", 4, AC_PrecLand, _land_ofs_cm_y, 0), // @Param: EST_TYPE // @DisplayName: Precision Land Estimator Type // @Description: Specifies the estimation method to be used // @Values: 0:RawSensor, 1:KalmanFilter // @User: Advanced AP_GROUPINFO("EST_TYPE", 5, AC_PrecLand, _estimator_type, 1), // @Param: ACC_P_NSE // @DisplayName: Kalman Filter Accelerometer Noise // @Description: Kalman Filter Accelerometer Noise, higher values weight the input from the camera more, accels less // @Range: 0.5 5 // @User: Advanced AP_GROUPINFO("ACC_P_NSE", 6, AC_PrecLand, _accel_noise, 2.5f), // @Param: CAM_POS_X // @DisplayName: Camera X position offset // @Description: X position of the camera in body frame. Positive X is forward of the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Advanced // @Param: CAM_POS_Y // @DisplayName: Camera Y position offset // @Description: Y position of the camera in body frame. Positive Y is to the right of the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Advanced // @Param: CAM_POS_Z // @DisplayName: Camera Z position offset // @Description: Z position of the camera in body frame. Positive Z is down from the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Advanced AP_GROUPINFO("CAM_POS", 7, AC_PrecLand, _cam_offset, 0.0f), // @Param: BUS // @DisplayName: Sensor Bus // @Description: Precland sensor bus for I2C sensors. // @Values: -1:DefaultBus,0:InternalI2C,1:ExternalI2C // @User: Advanced AP_GROUPINFO("BUS", 8, AC_PrecLand, _bus, -1), // @Param: LAG // @DisplayName: Precision Landing sensor lag // @Description: Precision Landing sensor lag, to cope with variable landing_target latency // @Range: 0.02 0.250 // @Increment: 1 // @Units: s // @User: Advanced // @RebootRequired: True AP_GROUPINFO("LAG", 9, AC_PrecLand, _lag, 0.02f), // 20ms is the old default buffer size (8 frames @ 400hz/2.5ms) AP_GROUPEND }; // Default constructor. // Note that the Vector/Matrix constructors already implicitly zero // their values. // AC_PrecLand::AC_PrecLand() { // set parameters to defaults AP_Param::setup_object_defaults(this, var_info); } // perform any required initialisation of landing controllers // update_rate_hz should be the rate at which the update method will be called in hz void AC_PrecLand::init(uint16_t update_rate_hz) { // exit immediately if init has already been run if (_backend != nullptr) { return; } // default health to false _backend = nullptr; _backend_state.healthy = false; // create inertial history buffer // constrain lag parameter to be within bounds _lag = constrain_float(_lag, 0.02f, 0.25f); // calculate inertial buffer size from lag and minimum of main loop rate and update_rate_hz argument const uint16_t inertial_buffer_size = MAX((uint16_t)roundf(_lag * MIN(update_rate_hz, AP::scheduler().get_loop_rate_hz())), 1); // instantiate ring buffer to hold inertial history, return on failure so no backends are created _inertial_history = new ObjectArray(inertial_buffer_size); if (_inertial_history == nullptr) { return; } // instantiate backend based on type parameter switch ((enum PrecLandType)(_type.get())) { // no type defined case PRECLAND_TYPE_NONE: default: return; // companion computer case PRECLAND_TYPE_COMPANION: _backend = new AC_PrecLand_Companion(*this, _backend_state); break; // IR Lock case PRECLAND_TYPE_IRLOCK: _backend = new AC_PrecLand_IRLock(*this, _backend_state); break; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL case PRECLAND_TYPE_SITL_GAZEBO: _backend = new AC_PrecLand_SITL_Gazebo(*this, _backend_state); break; case PRECLAND_TYPE_SITL: _backend = new AC_PrecLand_SITL(*this, _backend_state); break; #endif } // init backend if (_backend != nullptr) { _backend->init(); } } // update - give chance to driver to get updates from sensor void AC_PrecLand::update(float rangefinder_alt_cm, bool rangefinder_alt_valid) { // exit immediately if not enabled if (_backend == nullptr || _inertial_history == nullptr) { return; } // append current velocity and attitude correction into history buffer struct inertial_data_frame_s inertial_data_newest; const AP_AHRS_NavEKF &_ahrs = AP::ahrs_navekf(); _ahrs.getCorrectedDeltaVelocityNED(inertial_data_newest.correctedVehicleDeltaVelocityNED, inertial_data_newest.dt); inertial_data_newest.Tbn = _ahrs.get_rotation_body_to_ned(); Vector3f curr_vel; nav_filter_status status; if (!_ahrs.get_velocity_NED(curr_vel) || !_ahrs.get_filter_status(status)) { inertial_data_newest.inertialNavVelocityValid = false; } else { inertial_data_newest.inertialNavVelocityValid = status.flags.horiz_vel; } curr_vel.z = -curr_vel.z; // NED to NEU inertial_data_newest.inertialNavVelocity = curr_vel; inertial_data_newest.time_usec = AP_HAL::micros64(); _inertial_history->push_force(inertial_data_newest); // update estimator of target position if (_backend != nullptr && _enabled) { _backend->update(); run_estimator(rangefinder_alt_cm*0.01f, rangefinder_alt_valid); } const uint32_t now = AP_HAL::millis(); if (now - last_log_ms > 40) { // 25Hz last_log_ms = now; Write_Precland(); } } bool AC_PrecLand::target_acquired() { _target_acquired = _target_acquired && (AP_HAL::millis()-_last_update_ms) < 2000; return _target_acquired; } bool AC_PrecLand::get_target_position_cm(Vector2f& ret) { if (!target_acquired()) { return false; } Vector2f curr_pos; if (!AP::ahrs().get_relative_position_NE_origin(curr_pos)) { return false; } ret.x = (_target_pos_rel_out_NE.x + curr_pos.x) * 100.0f; // m to cm ret.y = (_target_pos_rel_out_NE.y + curr_pos.y) * 100.0f; // m to cm return true; } void AC_PrecLand::get_target_position_measurement_cm(Vector3f& ret) { ret = _target_pos_rel_meas_NED*100.0f; return; } bool AC_PrecLand::get_target_position_relative_cm(Vector2f& ret) { if (!target_acquired()) { return false; } ret = _target_pos_rel_out_NE*100.0f; return true; } bool AC_PrecLand::get_target_velocity_relative_cms(Vector2f& ret) { if (!target_acquired()) { return false; } ret = _target_vel_rel_out_NE*100.0f; return true; } // handle_msg - Process a LANDING_TARGET mavlink message void AC_PrecLand::handle_msg(const mavlink_message_t &msg) { // run backend update if (_backend != nullptr) { _backend->handle_msg(msg); } } // // Private methods // void AC_PrecLand::run_estimator(float rangefinder_alt_m, bool rangefinder_alt_valid) { const struct inertial_data_frame_s *inertial_data_delayed = (*_inertial_history)[0]; switch (_estimator_type) { case ESTIMATOR_TYPE_RAW_SENSOR: { // Return if there's any invalid velocity data for (uint8_t i=0; i<_inertial_history->available(); i++) { const struct inertial_data_frame_s *inertial_data = (*_inertial_history)[i]; if (!inertial_data->inertialNavVelocityValid) { _target_acquired = false; return; } } // Predict if (target_acquired()) { _target_pos_rel_est_NE.x -= inertial_data_delayed->inertialNavVelocity.x * inertial_data_delayed->dt; _target_pos_rel_est_NE.y -= inertial_data_delayed->inertialNavVelocity.y * inertial_data_delayed->dt; _target_vel_rel_est_NE.x = -inertial_data_delayed->inertialNavVelocity.x; _target_vel_rel_est_NE.y = -inertial_data_delayed->inertialNavVelocity.y; } // Update if a new Line-Of-Sight measurement is available if (construct_pos_meas_using_rangefinder(rangefinder_alt_m, rangefinder_alt_valid)) { _target_pos_rel_est_NE.x = _target_pos_rel_meas_NED.x; _target_pos_rel_est_NE.y = _target_pos_rel_meas_NED.y; _target_vel_rel_est_NE.x = -inertial_data_delayed->inertialNavVelocity.x; _target_vel_rel_est_NE.y = -inertial_data_delayed->inertialNavVelocity.y; _last_update_ms = AP_HAL::millis(); _target_acquired = true; } // Output prediction if (target_acquired()) { run_output_prediction(); } break; } case ESTIMATOR_TYPE_KALMAN_FILTER: { // Predict if (target_acquired()) { const float& dt = inertial_data_delayed->dt; const Vector3f& vehicleDelVel = inertial_data_delayed->correctedVehicleDeltaVelocityNED; _ekf_x.predict(dt, -vehicleDelVel.x, _accel_noise*dt); _ekf_y.predict(dt, -vehicleDelVel.y, _accel_noise*dt); } // Update if a new Line-Of-Sight measurement is available if (construct_pos_meas_using_rangefinder(rangefinder_alt_m, rangefinder_alt_valid)) { float xy_pos_var = sq(_target_pos_rel_meas_NED.z*(0.01f + 0.01f*AP::ahrs().get_gyro().length()) + 0.02f); if (!target_acquired()) { // reset filter state if (inertial_data_delayed->inertialNavVelocityValid) { _ekf_x.init(_target_pos_rel_meas_NED.x, xy_pos_var, -inertial_data_delayed->inertialNavVelocity.x, sq(2.0f)); _ekf_y.init(_target_pos_rel_meas_NED.y, xy_pos_var, -inertial_data_delayed->inertialNavVelocity.y, sq(2.0f)); } else { _ekf_x.init(_target_pos_rel_meas_NED.x, xy_pos_var, 0.0f, sq(10.0f)); _ekf_y.init(_target_pos_rel_meas_NED.y, xy_pos_var, 0.0f, sq(10.0f)); } _last_update_ms = AP_HAL::millis(); _target_acquired = true; } else { float NIS_x = _ekf_x.getPosNIS(_target_pos_rel_meas_NED.x, xy_pos_var); float NIS_y = _ekf_y.getPosNIS(_target_pos_rel_meas_NED.y, xy_pos_var); if (MAX(NIS_x, NIS_y) < 3.0f || _outlier_reject_count >= 3) { _outlier_reject_count = 0; _ekf_x.fusePos(_target_pos_rel_meas_NED.x, xy_pos_var); _ekf_y.fusePos(_target_pos_rel_meas_NED.y, xy_pos_var); _last_update_ms = AP_HAL::millis(); _target_acquired = true; } else { _outlier_reject_count++; } } } // Output prediction if (target_acquired()) { _target_pos_rel_est_NE.x = _ekf_x.getPos(); _target_pos_rel_est_NE.y = _ekf_y.getPos(); _target_vel_rel_est_NE.x = _ekf_x.getVel(); _target_vel_rel_est_NE.y = _ekf_y.getVel(); run_output_prediction(); } break; } } } bool AC_PrecLand::retrieve_los_meas(Vector3f& target_vec_unit_body) { if (_backend->have_los_meas() && _backend->los_meas_time_ms() != _last_backend_los_meas_ms) { _last_backend_los_meas_ms = _backend->los_meas_time_ms(); _backend->get_los_body(target_vec_unit_body); // Apply sensor yaw alignment rotation float sin_yaw_align = sinf(radians(_yaw_align*0.01f)); float cos_yaw_align = cosf(radians(_yaw_align*0.01f)); Matrix3f Rz = Matrix3f( cos_yaw_align, -sin_yaw_align, 0, sin_yaw_align, cos_yaw_align, 0, 0, 0, 1 ); target_vec_unit_body = Rz*target_vec_unit_body; return true; } else { return false; } } bool AC_PrecLand::construct_pos_meas_using_rangefinder(float rangefinder_alt_m, bool rangefinder_alt_valid) { Vector3f target_vec_unit_body; if (retrieve_los_meas(target_vec_unit_body)) { const struct inertial_data_frame_s *inertial_data_delayed = (*_inertial_history)[0]; Vector3f target_vec_unit_ned = inertial_data_delayed->Tbn * target_vec_unit_body; bool target_vec_valid = target_vec_unit_ned.z > 0.0f; bool alt_valid = (rangefinder_alt_valid && rangefinder_alt_m > 0.0f) || (_backend->distance_to_target() > 0.0f); if (target_vec_valid && alt_valid) { float dist, alt; if (_backend->distance_to_target() > 0.0f) { dist = _backend->distance_to_target(); alt = dist * target_vec_unit_ned.z; } else { alt = MAX(rangefinder_alt_m, 0.0f); dist = alt / target_vec_unit_ned.z; } // Compute camera position relative to IMU Vector3f accel_body_offset = AP::ins().get_imu_pos_offset(AP::ahrs().get_primary_accel_index()); Vector3f cam_pos_ned = inertial_data_delayed->Tbn * (_cam_offset.get() - accel_body_offset); // Compute target position relative to IMU _target_pos_rel_meas_NED = Vector3f(target_vec_unit_ned.x*dist, target_vec_unit_ned.y*dist, alt) + cam_pos_ned; return true; } } return false; } void AC_PrecLand::run_output_prediction() { _target_pos_rel_out_NE = _target_pos_rel_est_NE; _target_vel_rel_out_NE = _target_vel_rel_est_NE; // Predict forward from delayed time horizon for (uint8_t i=1; i<_inertial_history->available(); i++) { const struct inertial_data_frame_s *inertial_data = (*_inertial_history)[i]; _target_vel_rel_out_NE.x -= inertial_data->correctedVehicleDeltaVelocityNED.x; _target_vel_rel_out_NE.y -= inertial_data->correctedVehicleDeltaVelocityNED.y; _target_pos_rel_out_NE.x += _target_vel_rel_out_NE.x * inertial_data->dt; _target_pos_rel_out_NE.y += _target_vel_rel_out_NE.y * inertial_data->dt; } const AP_AHRS &_ahrs = AP::ahrs(); const Matrix3f& Tbn = (*_inertial_history)[_inertial_history->available()-1]->Tbn; Vector3f accel_body_offset = AP::ins().get_imu_pos_offset(_ahrs.get_primary_accel_index()); // Apply position correction for CG offset from IMU Vector3f imu_pos_ned = Tbn * accel_body_offset; _target_pos_rel_out_NE.x += imu_pos_ned.x; _target_pos_rel_out_NE.y += imu_pos_ned.y; // Apply position correction for body-frame horizontal camera offset from CG, so that vehicle lands lens-to-target Vector3f cam_pos_horizontal_ned = Tbn * Vector3f(_cam_offset.get().x, _cam_offset.get().y, 0); _target_pos_rel_out_NE.x -= cam_pos_horizontal_ned.x; _target_pos_rel_out_NE.y -= cam_pos_horizontal_ned.y; // Apply velocity correction for IMU offset from CG Vector3f vel_ned_rel_imu = Tbn * (_ahrs.get_gyro() % (-accel_body_offset)); _target_vel_rel_out_NE.x -= vel_ned_rel_imu.x; _target_vel_rel_out_NE.y -= vel_ned_rel_imu.y; // Apply land offset Vector3f land_ofs_ned_m = _ahrs.get_rotation_body_to_ned() * Vector3f(_land_ofs_cm_x,_land_ofs_cm_y,0) * 0.01f; _target_pos_rel_out_NE.x += land_ofs_ned_m.x; _target_pos_rel_out_NE.y += land_ofs_ned_m.y; } // Write a precision landing entry void AC_PrecLand::Write_Precland() { // exit immediately if not enabled if (!enabled()) { return; } Vector3f target_pos_meas; Vector2f target_pos_rel; Vector2f target_vel_rel; get_target_position_relative_cm(target_pos_rel); get_target_velocity_relative_cms(target_vel_rel); get_target_position_measurement_cm(target_pos_meas); const struct log_Precland pkt { LOG_PACKET_HEADER_INIT(LOG_PRECLAND_MSG), time_us : AP_HAL::micros64(), healthy : healthy(), target_acquired : target_acquired(), pos_x : target_pos_rel.x, pos_y : target_pos_rel.y, vel_x : target_vel_rel.x, vel_y : target_vel_rel.y, meas_x : target_pos_meas.x, meas_y : target_pos_meas.y, meas_z : target_pos_meas.z, last_meas : last_backend_los_meas_ms(), ekf_outcount : ekf_outlier_count(), estimator : estimator_type() }; AP::logger().WriteBlock(&pkt, sizeof(pkt)); }