/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* main Rover class, containing all vehicle specific state */ #pragma once #include #include // Libraries #include #include #include #include #include #include // ArduPilot GPS library #include // ArduPilot Mega Analog to Digital Converter Library #include #include // ArduPilot Mega Magnetometer Library #include // ArduPilot Mega Vector/Matrix math Library #include // Inertial Sensor (uncalibated IMU) Library #include // interface and maths for accelerometer calibration #include // ArduPilot Mega DCM Library #include #include #include // Mission command library #include #include #include // PID library #include // RC Channel Library #include // Range finder library #include // Filter library #include // Filter library - butterworth filter #include // FIFO buffer library #include // Mode Filter from Filter library #include // Mode Filter from Filter library #include // APM relay #include #include // Camera/Antenna mount #include // Camera triggering #include // Serial manager library #include // needed for AHRS build #include // needed for AHRS build #include #include // RC input mapping library #include // main loop scheduler #include #include #include #include #include #include #include "AP_MotorsUGV.h" #include "mode.h" #include "AP_Arming.h" #include "compat.h" #include // Notify library #include // Battery monitor library #include // Optical Flow library #include // RSSI Library #include #include // statistics library #include #include #include // Configuration #include "config.h" // Local modules #include "defines.h" #if ADVANCED_FAILSAFE == ENABLED #include "afs_rover.h" #endif #include "Parameters.h" #include "GCS_Mavlink.h" #include "GCS_Rover.h" #include // ArduPilot Mega Declination Helper Library #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #endif class Rover : public AP_HAL::HAL::Callbacks { public: friend class GCS_MAVLINK_Rover; friend class Parameters; friend class ParametersG2; friend class AP_Arming_Rover; #if ADVANCED_FAILSAFE == ENABLED friend class AP_AdvancedFailsafe_Rover; #endif friend class GCS_Rover; friend class Mode; friend class ModeAuto; friend class ModeGuided; friend class ModeHold; friend class ModeSteering; friend class ModeManual; friend class ModeRTL; Rover(void); // HAL::Callbacks implementation. void setup(void) override; void loop(void) override; private: AP_HAL::BetterStream* cliSerial; // must be the first AP_Param variable declared to ensure its // constructor runs before the constructors of the other AP_Param // variables AP_Param param_loader; // all settable parameters Parameters g; ParametersG2 g2; // main loop scheduler AP_Scheduler scheduler; // mapping between input channels RCMapper rcmap; // board specific config AP_BoardConfig BoardConfig; #if HAL_WITH_UAVCAN // board specific config for CAN bus AP_BoardConfig_CAN BoardConfig_CAN; #endif // primary control channels RC_Channel *channel_steer; RC_Channel *channel_throttle; RC_Channel *channel_learn; DataFlash_Class DataFlash; // sensor drivers AP_GPS gps; AP_Baro barometer; Compass compass; AP_InertialSensor ins; RangeFinder rangefinder { serial_manager, ROTATION_NONE }; AP_Button button; // flight modes convenience array AP_Int8 *modes; // Inertial Navigation EKF #if AP_AHRS_NAVEKF_AVAILABLE NavEKF2 EKF2{&ahrs, barometer, rangefinder}; NavEKF3 EKF3{&ahrs, barometer, rangefinder}; AP_AHRS_NavEKF ahrs {ins, barometer, gps, rangefinder, EKF2, EKF3}; #else AP_AHRS_DCM ahrs {ins, barometer, gps}; #endif // Arming/Disarming management class AP_Arming_Rover arming {ahrs, barometer, compass, battery}; AP_L1_Control L1_controller; // selected navigation controller AP_Navigation *nav_controller; // steering controller AP_SteerController steerController; // Mission library AP_Mission mission; #if AP_AHRS_NAVEKF_AVAILABLE OpticalFlow optflow{ahrs}; #endif // RSSI AP_RSSI rssi; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL SITL::SITL sitl; #endif // GCS handling AP_SerialManager serial_manager; GCS_Rover _gcs; // avoid using this; use gcs() GCS_Rover &gcs() { return _gcs; } // relay support AP_Relay relay; AP_ServoRelayEvents ServoRelayEvents; // Camera #if CAMERA == ENABLED AP_Camera camera; #endif // The rover's current location struct Location current_loc; // Camera/Antenna mount tracking and stabilisation stuff #if MOUNT == ENABLED // current_loc uses the baro/gps solution for altitude rather than gps only. AP_Mount camera_mount; #endif // true if initialisation has completed bool initialised; // if USB is connected bool usb_connected; // This is the state of the flight control system // There are multiple states defined such as MANUAL, AUTO, ... Mode *control_mode; // Used to maintain the state of the previous control switch position // This is set to -1 when we need to re-read the switch uint8_t oldSwitchPosition; // These are values received from the GCS if the user is using GCS joystick // control and are substituted for the values coming from the RC radio int16_t rc_override[8]; // A flag if GCS joystick control is in use bool rc_override_active; // Failsafe // A tracking variable for type of failsafe active // Used for failsafe based on loss of RC signal or GCS signal. See // FAILSAFE_EVENT_* struct { uint8_t bits; uint32_t rc_override_timer; uint32_t start_time; uint8_t triggered; uint32_t last_valid_rc_ms; } failsafe; // notification object for LEDs, buzzers etc (parameter set to false disables external leds) AP_Notify notify; // true if we have a position estimate from AHRS bool have_position; bool rtl_complete; // angle of our next navigation waypoint int32_t next_navigation_leg_cd; // ground speed error in m/s float groundspeed_error; // 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel int16_t throttle_nudge; // receiver RSSI uint8_t receiver_rssi; // the time when the last HEARTBEAT message arrived from a GCS uint32_t last_heartbeat_ms; // obstacle detection information struct { // have we detected an obstacle? uint8_t detected_count; float turn_angle; uint16_t rangefinder1_distance_cm; uint16_t rangefinder2_distance_cm; // time when we last detected an obstacle, in milliseconds uint32_t detected_time_ms; } obstacle; // Ground speed // The amount current ground speed is below min ground speed. meters per second float ground_speed; int16_t throttle; // CH7 control // Used to track the CH7 toggle state. // When CH7 goes LOW PWM from HIGH PWM, this value will have been set true // This allows advanced functionality to know when to execute bool ch7_flag; // Battery Sensors AP_BattMonitor battery; #if FRSKY_TELEM_ENABLED == ENABLED // FrSky telemetry support AP_Frsky_Telem frsky_telemetry; #endif uint32_t control_sensors_present; uint32_t control_sensors_enabled; uint32_t control_sensors_health; // Waypoint distances // Distance between rover and next waypoint. Meters float wp_distance; // Distance between previous and next waypoint. Meters int32_t wp_totalDistance; // Conditional command // A value used in condition commands (eg delay, change alt, etc.) // For example in a change altitude command, it is the altitude to change to. int32_t condition_value; // A starting value used to check the status of a conditional command. // For example in a delay command the condition_start records that start time for the delay int32_t condition_start; // Use for stopping navigation in auto mode and do rotation on spot. bool do_auto_rotation; // 3D Location vectors // Location structure defined in AP_Common // The home location used for RTL. The location is set when we first get stable GPS lock const struct Location &home; // Flag for if we have g_gps lock and have set the home location in AHRS enum HomeState home_is_set = HOME_UNSET; // true if the system time has been set from the GPS bool system_time_set; // true if the compass's initial location has been set bool compass_init_location; // The location of the previous waypoint. Used for track following and altitude ramp calculations struct Location prev_WP; // The location of the current/active waypoint. Used for track following struct Location next_WP; // IMU variables // The main loop execution time. Seconds // This is the time between calls to the DCM algorithm and is the Integration time for the gyros. float G_Dt; // Performance monitoring // Timer used to accrue data and trigger recording of the performance monitoring log message int32_t perf_mon_timer; // The maximum main loop execution time, in microseconds, recorded in the current performance monitoring interval uint32_t G_Dt_max; // System Timers // Time in microseconds of start of main control loop. uint32_t fast_loopTimer_us; // Number of milliseconds used in last main loop cycle uint32_t delta_us_fast_loop; // Counter of main loop executions. Used for performance monitoring and failsafe processing uint16_t mainLoop_count; // set if we are driving backwards bool in_reverse; // set if the users asks for auto reverse bool in_auto_reverse; // true if pivoting (set by use_pivot_steering) bool pivot_steering_active; static const AP_Scheduler::Task scheduler_tasks[]; // use this to prevent recursion during sensor init bool in_mavlink_delay; // true if we are out of time in our event timeslice bool gcs_out_of_time; static const AP_Param::Info var_info[]; static const LogStructure log_structure[]; // Loiter control uint16_t loiter_duration; // How long we should loiter at the nav_waypoint (time in seconds) uint32_t loiter_start_time; // How long have we been loitering - The start time in millis bool active_loiter; // TRUE if we actively return to the loitering waypoint if we drift off float distance_past_wp; // record the distance we have gone past the wp bool previously_reached_wp; // set to true if we have EVER reached the waypoint // time that rudder/steering arming has been running uint32_t rudder_arm_timer; // Store parameters from Guided msg struct { float turn_angle; // target heading in centi-degrees float target_speed; // target speed in m/s float target_steer_speed; // target steer speed in degree/s uint32_t msg_time_ms; // time of last guided message } guided_control; // Store the time the last GPS message was received. uint32_t last_gps_msg_ms{0}; // last visual odometry update time uint32_t visual_odom_last_update_ms; // True when we are doing motor test bool motor_test; ModeInitializing mode_initializing; ModeHold mode_hold; ModeManual mode_manual; ModeGuided mode_guided; ModeAuto mode_auto; ModeLearning mode_learning; ModeSteering mode_steering; ModeRTL mode_rtl; private: // private member functions void ahrs_update(); void mount_update(void); void update_trigger(void); void update_alt(); void gcs_failsafe_check(void); void init_compass(void); void compass_accumulate(void); void compass_cal_update(void); void update_compass(void); void update_logging1(void); void update_logging2(void); void update_aux(void); void one_second_loop(void); void update_GPS_50Hz(void); void update_GPS_10Hz(void); void update_current_mode(void); void update_navigation(); void send_heartbeat(mavlink_channel_t chan); void send_attitude(mavlink_channel_t chan); void update_sensor_status_flags(void); void send_extended_status1(mavlink_channel_t chan); void send_location(mavlink_channel_t chan); void send_nav_controller_output(mavlink_channel_t chan); void send_servo_out(mavlink_channel_t chan); void send_vfr_hud(mavlink_channel_t chan); void send_simstate(mavlink_channel_t chan); void send_hwstatus(mavlink_channel_t chan); void send_pid_tuning(mavlink_channel_t chan); void send_rangefinder(mavlink_channel_t chan); void send_current_waypoint(mavlink_channel_t chan); void gcs_data_stream_send(void); void gcs_update(void); void gcs_retry_deferred(void); Mode *control_mode_from_num(enum mode num); bool set_mode(Mode &mode); bool mavlink_set_mode(uint8_t mode); void do_erase_logs(void); void Log_Write_Performance(); void Log_Write_Steering(); void Log_Write_Startup(uint8_t type); void Log_Write_Control_Tuning(); void Log_Write_Nav_Tuning(); void Log_Write_Rangefinder(); void Log_Write_Beacon(); void Log_Write_Current(); void Log_Write_Attitude(); void Log_Write_RC(void); void Log_Write_Error(uint8_t sub_system, uint8_t error_code); void Log_Write_Baro(void); void Log_Write_Home_And_Origin(); void Log_Write_Vehicle_Startup_Messages(); void Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target); void Log_Write_WheelEncoder(); void Log_Read(uint16_t log_num, uint16_t start_page, uint16_t end_page); void log_init(void); void Log_Arm_Disarm(); void load_parameters(void); bool use_pivot_steering(void); void set_servos(void); void set_auto_WP(const struct Location& loc); void set_guided_WP(const struct Location& loc); void set_guided_velocity(float target_steer_speed, float target_speed); void update_home_from_EKF(); bool set_home_to_current_location(bool lock); bool set_home(const Location& loc, bool lock); void set_system_time_from_GPS(); void restart_nav(); void exit_mission(); void do_RTL(void); bool verify_RTL(); bool verify_wait_delay(); bool verify_within_distance(); bool verify_yaw(); #if CAMERA == ENABLED void do_take_picture(); void log_picture(); #endif void update_commands(void); void delay(uint32_t ms); void mavlink_delay(uint32_t ms); void read_control_switch(); uint8_t readSwitch(void); void reset_control_switch(); void read_trim_switch(); void update_events(void); void button_update(void); void stats_update(); void navigate(); void set_control_channels(void); void init_rc_in(); void init_rc_out(); void read_radio(); void control_failsafe(uint16_t pwm); bool throttle_failsafe_active(); void trim_control_surfaces(); void trim_radio(); void init_barometer(bool full_calibration); void init_rangefinder(void); void init_beacon(); void update_beacon(); void init_visual_odom(); void update_visual_odom(); void update_wheel_encoder(); void read_battery(void); void read_receiver_rssi(void); void read_rangefinders(void); void zero_eeprom(void); void print_enabled(bool b); void init_ardupilot(); void startup_ground(void); void set_reverse(bool reverse); void failsafe_trigger(uint8_t failsafe_type, bool on); void startup_INS_ground(void); void update_notify(); void resetPerfData(void); void check_usb_mux(void); uint8_t check_digital_pin(uint8_t pin); bool should_log(uint32_t mask); void print_hit_enter(); void print_mode(AP_HAL::BetterStream *port, uint8_t mode); void notify_mode(enum mode new_mode); bool start_command(const AP_Mission::Mission_Command& cmd); bool verify_command(const AP_Mission::Mission_Command& cmd); bool verify_command_callback(const AP_Mission::Mission_Command& cmd); void do_nav_wp(const AP_Mission::Mission_Command& cmd); void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd); void do_loiter_time(const AP_Mission::Mission_Command& cmd); bool verify_nav_wp(const AP_Mission::Mission_Command& cmd); bool verify_loiter_unlimited(const AP_Mission::Mission_Command& cmd); bool verify_loiter_time(const AP_Mission::Mission_Command& cmd); void do_wait_delay(const AP_Mission::Mission_Command& cmd); void do_within_distance(const AP_Mission::Mission_Command& cmd); void do_yaw(const AP_Mission::Mission_Command& cmd); void do_change_speed(const AP_Mission::Mission_Command& cmd); void do_set_home(const AP_Mission::Mission_Command& cmd); #if CAMERA == ENABLED void do_digicam_configure(const AP_Mission::Mission_Command& cmd); void do_digicam_control(const AP_Mission::Mission_Command& cmd); #endif void do_set_reverse(const AP_Mission::Mission_Command& cmd); void init_capabilities(void); void rudder_arm_disarm_check(); void change_arm_state(void); bool disarm_motors(void); bool arm_motors(AP_Arming::ArmingMethod method); bool motor_active(); void update_home(); void accel_cal_update(void); void nav_set_yaw_speed(); bool do_yaw_rotation(); void nav_set_speed(); bool in_stationary_loiter(void); void crash_check(); #if ADVANCED_FAILSAFE == ENABLED void afs_fs_check(void); #endif public: bool print_log_menu(void); int8_t dump_log(uint8_t argc, const Menu::arg *argv); int8_t erase_logs(uint8_t argc, const Menu::arg *argv); int8_t select_logs(uint8_t argc, const Menu::arg *argv); int8_t process_logs(uint8_t argc, const Menu::arg *argv); int8_t setup_erase(uint8_t argc, const Menu::arg *argv); int8_t setup_mode(uint8_t argc, const Menu::arg *argv); int8_t reboot_board(uint8_t, const Menu::arg*); int8_t main_menu_help(uint8_t argc, const Menu::arg *argv); int8_t test_mode(uint8_t argc, const Menu::arg *argv); void run_cli(AP_HAL::UARTDriver *port); void mavlink_delay_cb(); void failsafe_check(); int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv); int8_t test_passthru(uint8_t argc, const Menu::arg *argv); int8_t test_radio(uint8_t argc, const Menu::arg *argv); int8_t test_failsafe(uint8_t argc, const Menu::arg *argv); int8_t test_relay(uint8_t argc, const Menu::arg *argv); int8_t test_wp(uint8_t argc, const Menu::arg *argv); void test_wp_print(const AP_Mission::Mission_Command& cmd); int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv); int8_t test_logging(uint8_t argc, const Menu::arg *argv); int8_t test_gps(uint8_t argc, const Menu::arg *argv); int8_t test_ins(uint8_t argc, const Menu::arg *argv); int8_t test_mag(uint8_t argc, const Menu::arg *argv); int8_t test_rangefinder(uint8_t argc, const Menu::arg *argv); #if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN int8_t test_shell(uint8_t argc, const Menu::arg *argv); #endif void dataflash_periodic(void); void update_soft_armed(); // Motor test void motor_test_output(); bool mavlink_motor_test_check(mavlink_channel_t chan, bool check_rc, uint8_t motor_seq, uint8_t throttle_type, int16_t throttle_value); uint8_t mavlink_motor_test_start(mavlink_channel_t chan, uint8_t motor_seq, uint8_t throttle_type, int16_t throttle_value, float timeout_sec); void motor_test_stop(); }; #define MENU_FUNC(func) FUNCTOR_BIND(&rover, &Rover::func, int8_t, uint8_t, const Menu::arg *) extern const AP_HAL::HAL& hal; extern Rover rover; using AP_HAL::millis; using AP_HAL::micros;