/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* simple quadplane simulator class */ #include "SIM_QuadPlane.h" #include using namespace SITL; QuadPlane::QuadPlane(const char *frame_str) : Plane(frame_str) { // default to X frame const char *frame_type = "x"; uint8_t motor_offset = 4; if (strstr(frame_str, "-octa-quad")) { frame_type = "octa-quad"; } else if (strstr(frame_str, "-octaquad")) { frame_type = "octa-quad"; } else if (strstr(frame_str, "-octa")) { frame_type = "octa"; } else if (strstr(frame_str, "-hexax")) { frame_type = "hexax"; } else if (strstr(frame_str, "-hexa")) { frame_type = "hexa"; } else if (strstr(frame_str, "-plus")) { frame_type = "+"; } else if (strstr(frame_str, "-y6")) { frame_type = "y6"; } else if (strstr(frame_str, "-tri")) { frame_type = "tri"; } else if (strstr(frame_str, "-tilttrivec")) { frame_type = "tilttrivec"; // fwd motor gives zero thrust thrust_scale = 0; } else if (strstr(frame_str, "-tilthvec")) { frame_type = "tilthvec"; } else if (strstr(frame_str, "-tilttri")) { frame_type = "tilttri"; // fwd motor gives zero thrust thrust_scale = 0; } else if (strstr(frame_str, "firefly")) { frame_type = "firefly"; // elevon style surfaces elevons = true; // fwd motor gives zero thrust thrust_scale = 0; // vtol motors start at 2 motor_offset = 2; } else if (strstr(frame_str, "cl84")) { frame_type = "tilttri"; // fwd motor gives zero thrust thrust_scale = 0; } frame = Frame::find_frame(frame_type); if (frame == nullptr) { printf("Failed to find frame '%s'\n", frame_type); exit(1); } num_motors = 1 + frame->num_motors; if (strstr(frame_str, "cl84")) { // setup retract servos at front frame->motors[0].servo_type = Motor::SERVO_RETRACT; frame->motors[0].servo_rate = 7*60.0/90; // 7 seconds to change frame->motors[1].servo_type = Motor::SERVO_RETRACT; frame->motors[1].servo_rate = 7*60.0/90; // 7 seconds to change } // leave first 4 servos free for plane frame->motor_offset = motor_offset; // we use zero terminal velocity to let the plane model handle the drag frame->init(mass, 0.51, 0, 0); ground_behavior = GROUND_BEHAVIOR_NO_MOVEMENT; } /* update the quadplane simulation by one time step */ void QuadPlane::update(const struct sitl_input &input) { // get wind vector setup update_wind(input); // first plane forces Vector3f rot_accel; calculate_forces(input, rot_accel, accel_body); // now quad forces Vector3f quad_rot_accel; Vector3f quad_accel_body; frame->calculate_forces(*this, input, quad_rot_accel, quad_accel_body, &rpm[1]); // estimate voltage and current frame->current_and_voltage(input, battery_voltage, battery_current); float throttle; if (reverse_thrust) { throttle = filtered_servo_angle(input, 2); } else { throttle = filtered_servo_range(input, 2); } // assume 20A at full fwd throttle throttle = fabsf(throttle); battery_current += 20 * throttle; rot_accel += quad_rot_accel; accel_body += quad_accel_body; update_dynamics(rot_accel); // update lat/lon/altitude update_position(); time_advance(); // update magnetic field update_mag_field_bf(); }