/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include "SPIDevice.h" #include #include #include "Util.h" #include "Scheduler.h" #include "Semaphores.h" #include #include "hwdef/common/stm32_util.h" #if HAL_USE_SPI == TRUE using namespace ChibiOS; extern const AP_HAL::HAL& hal; // SPI mode numbers #define SPIDEV_MODE0 0 #define SPIDEV_MODE1 SPI_CR1_CPHA #define SPIDEV_MODE2 SPI_CR1_CPOL #define SPIDEV_MODE3 SPI_CR1_CPOL | SPI_CR1_CPHA #define SPI1_CLOCK STM32_PCLK2 #define SPI2_CLOCK STM32_PCLK1 #define SPI3_CLOCK STM32_PCLK1 #define SPI4_CLOCK STM32_PCLK2 #define SPI5_CLOCK STM32_PCLK2 #define SPI6_CLOCK STM32_PCLK2 // expected bus clock speeds static const uint32_t bus_clocks[6] = { SPI1_CLOCK, SPI2_CLOCK, SPI3_CLOCK, SPI4_CLOCK, SPI5_CLOCK, SPI6_CLOCK }; static const struct SPIDriverInfo { SPIDriver *driver; uint8_t busid; // used for device IDs in parameters uint8_t dma_channel_rx; uint8_t dma_channel_tx; } spi_devices[] = { HAL_SPI_BUS_LIST }; #define MHZ (1000U*1000U) #define KHZ (1000U) // device list comes from hwdef.dat ChibiOS::SPIDesc SPIDeviceManager::device_table[] = { HAL_SPI_DEVICE_LIST }; SPIBus::SPIBus(uint8_t _bus) : DeviceBus(APM_SPI_PRIORITY), bus(_bus) { chMtxObjectInit(&dma_lock); // allow for sharing of DMA channels with other peripherals dma_handle = new Shared_DMA(spi_devices[bus].dma_channel_rx, spi_devices[bus].dma_channel_tx, FUNCTOR_BIND_MEMBER(&SPIBus::dma_allocate, void, Shared_DMA *), FUNCTOR_BIND_MEMBER(&SPIBus::dma_deallocate, void, Shared_DMA *)); } /* allocate DMA channel */ void SPIBus::dma_allocate(Shared_DMA *ctx) { // nothing to do as we call spiStart() on each transaction } /* deallocate DMA channel */ void SPIBus::dma_deallocate(Shared_DMA *ctx) { chMtxLock(&dma_lock); // another non-SPI peripheral wants one of our DMA channels if (spi_started) { spiStop(spi_devices[bus].driver); spi_started = false; } chMtxUnlock(&dma_lock); } SPIDevice::SPIDevice(SPIBus &_bus, SPIDesc &_device_desc) : bus(_bus) , device_desc(_device_desc) { set_device_bus(spi_devices[_bus.bus].busid); set_device_address(_device_desc.device); freq_flag_low = derive_freq_flag(device_desc.lowspeed); freq_flag_high = derive_freq_flag(device_desc.highspeed); set_speed(AP_HAL::Device::SPEED_LOW); asprintf(&pname, "SPI:%s:%u:%u", device_desc.name, (unsigned)bus.bus, (unsigned)device_desc.device); //printf("SPI device %s on %u:%u at speed %u mode %u\n", // device_desc.name, // (unsigned)bus.bus, (unsigned)device_desc.device, // (unsigned)frequency, (unsigned)device_desc.mode); } SPIDevice::~SPIDevice() { //printf("SPI device %s on %u:%u closed\n", device_desc.name, // (unsigned)bus.bus, (unsigned)device_desc.device); free(pname); } SPIDriver * SPIDevice::get_driver() { return spi_devices[device_desc.bus].driver; } bool SPIDevice::set_speed(AP_HAL::Device::Speed speed) { switch (speed) { case AP_HAL::Device::SPEED_HIGH: freq_flag = freq_flag_high; break; case AP_HAL::Device::SPEED_LOW: freq_flag = freq_flag_low; break; } return true; } /* low level transfer function */ void SPIDevice::do_transfer(const uint8_t *send, uint8_t *recv, uint32_t len) { bool old_cs_forced = cs_forced; if (!set_chip_select(true)) { return; } bus.bouncebuffer_setup(send, len, recv, len); if (send == nullptr) { spiReceive(spi_devices[device_desc.bus].driver, len, recv); } else if (recv == nullptr) { spiSend(spi_devices[device_desc.bus].driver, len, send); } else { spiExchange(spi_devices[device_desc.bus].driver, len, send, recv); } bus.bouncebuffer_finish(send, recv, len); set_chip_select(old_cs_forced); } bool SPIDevice::clock_pulse(uint32_t n) { if (!cs_forced) { //special mode to init sdcard without cs asserted bus.semaphore.take(HAL_SEMAPHORE_BLOCK_FOREVER); acquire_bus(true, true); spiIgnore(spi_devices[device_desc.bus].driver, n); acquire_bus(false, true); bus.semaphore.give(); } else { bus.semaphore.assert_owner(); spiIgnore(spi_devices[device_desc.bus].driver, n); } return true; } uint16_t SPIDevice::derive_freq_flag_bus(uint8_t busid, uint32_t _frequency) { uint32_t spi_clock_freq = SPI1_CLOCK; if (busid > 0 && uint8_t(busid-1) < ARRAY_SIZE(bus_clocks)) { spi_clock_freq = bus_clocks[busid-1] / 2; } // find first divisor that brings us below the desired SPI clock uint32_t i = 0; while (spi_clock_freq > _frequency && i<7) { spi_clock_freq >>= 1; i++; } // assuming the bitrate bits are consecutive in the CR1 register, // we can just multiply by BR_0 to get the right bits for the desired // scaling return i * SPI_CR1_BR_0; } uint16_t SPIDevice::derive_freq_flag(uint32_t _frequency) { uint8_t busid = spi_devices[device_desc.bus].busid; return derive_freq_flag_bus(busid, _frequency); } bool SPIDevice::transfer(const uint8_t *send, uint32_t send_len, uint8_t *recv, uint32_t recv_len) { if (!bus.semaphore.check_owner()) { hal.console->printf("SPI: not owner of 0x%x\n", unsigned(get_bus_id())); return false; } if ((send_len == recv_len && send == recv) || !send || !recv) { // simplest cases, needed for DMA do_transfer(send, recv, recv_len?recv_len:send_len); return true; } uint8_t buf[send_len+recv_len]; if (send_len > 0) { memcpy(buf, send, send_len); } if (recv_len > 0) { memset(&buf[send_len], 0, recv_len); } do_transfer(buf, buf, send_len+recv_len); if (recv_len > 0) { memcpy(recv, &buf[send_len], recv_len); } return true; } bool SPIDevice::transfer_fullduplex(const uint8_t *send, uint8_t *recv, uint32_t len) { bus.semaphore.assert_owner(); uint8_t buf[len]; memcpy(buf, send, len); do_transfer(buf, buf, len); memcpy(recv, buf, len); return true; } AP_HAL::Semaphore *SPIDevice::get_semaphore() { return &bus.semaphore; } AP_HAL::Device::PeriodicHandle SPIDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb) { return bus.register_periodic_callback(period_usec, cb, this); } bool SPIDevice::adjust_periodic_callback(AP_HAL::Device::PeriodicHandle h, uint32_t period_usec) { return bus.adjust_timer(h, period_usec); } /* used to acquire bus and (optionally) assert cs */ bool SPIDevice::acquire_bus(bool set, bool skip_cs) { bus.semaphore.assert_owner(); if (set && cs_forced) { return true; } if (!set && !cs_forced) { return false; } if (!set && cs_forced) { if(!skip_cs) { spiUnselectI(spi_devices[device_desc.bus].driver); /* Slave Select de-assertion. */ } spiReleaseBus(spi_devices[device_desc.bus].driver); /* Ownership release. */ cs_forced = false; bus.dma_handle->unlock(); } else { bus.dma_handle->lock(); spiAcquireBus(spi_devices[device_desc.bus].driver); /* Acquire ownership of the bus. */ bus.spicfg.end_cb = nullptr; bus.spicfg.ssport = PAL_PORT(device_desc.pal_line); bus.spicfg.sspad = PAL_PAD(device_desc.pal_line); bus.spicfg.cr1 = (uint16_t)(freq_flag | device_desc.mode); bus.spicfg.cr2 = 0; if (bus.spi_started) { spiStop(spi_devices[device_desc.bus].driver); bus.spi_started = false; } spiStart(spi_devices[device_desc.bus].driver, &bus.spicfg); /* Setup transfer parameters. */ bus.spi_started = true; if(!skip_cs) { spiSelectI(spi_devices[device_desc.bus].driver); /* Slave Select assertion. */ } cs_forced = true; } return true; } /* allow for control of SPI chip select pin */ bool SPIDevice::set_chip_select(bool set) { return acquire_bus(set, false); } /* return a SPIDevice given a string device name */ AP_HAL::OwnPtr SPIDeviceManager::get_device(const char *name) { /* Find the bus description in the table */ uint8_t i; for (i = 0; i(nullptr); } SPIDesc &desc = device_table[i]; // find the bus SPIBus *busp; for (busp = buses; busp; busp = (SPIBus *)busp->next) { if (busp->bus == desc.bus) { break; } } if (busp == nullptr) { // create a new one busp = new SPIBus(desc.bus); if (busp == nullptr) { return nullptr; } busp->next = buses; busp->bus = desc.bus; buses = busp; } return AP_HAL::OwnPtr(new SPIDevice(*busp, desc)); } #ifdef HAL_SPI_CHECK_CLOCK_FREQ /* test clock frequencies. This measures the actual SPI clock frequencies on all configured SPI buses. Used during board bringup to validate clock configuration */ void SPIDevice::test_clock_freq(void) { // delay for USB to come up hal.console->printf("Waiting for USB\n"); hal.scheduler->delay(1000); hal.console->printf("SPI1_CLOCK=%u SPI2_CLOCK=%u SPI3_CLOCK=%u SPI4_CLOCK=%u\n", SPI1_CLOCK, SPI2_CLOCK, SPI3_CLOCK, SPI4_CLOCK); // we will send 1024 bytes without any CS asserted and measure the // time it takes to do the transfer uint16_t len = 1024; uint8_t *buf = (uint8_t *)hal.util->malloc_type(len, AP_HAL::Util::MEM_DMA_SAFE); for (uint8_t i=0; iprintf("SPI[%u] clock=%u\n", spi_devices[i].busid, unsigned(1000000ULL * len * 8ULL / uint64_t(t1 - t0))); } hal.util->free_type(buf, len, AP_HAL::Util::MEM_DMA_SAFE); } #endif // HAL_SPI_CHECK_CLOCK_FREQ #endif // HAL_USE_SPI