/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include "AP_InertialSensor_HIL.h" #include const extern AP_HAL::HAL& hal; AP_InertialSensor_HIL::AP_InertialSensor_HIL() : AP_InertialSensor() { Vector3f accels; accels.z = -GRAVITY_MSS; set_accel(accels); } uint16_t AP_InertialSensor_HIL::_init_sensor( Sample_rate sample_rate ) { switch (sample_rate) { case RATE_50HZ: _sample_period_ms = 20; break; case RATE_100HZ: _sample_period_ms = 10; break; case RATE_200HZ: _sample_period_ms = 5; break; } return AP_PRODUCT_ID_NONE; } /*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ bool AP_InertialSensor_HIL::update( void ) { uint32_t now = hal.scheduler->millis(); _delta_time_usec = (now - _last_update_ms) * 1000; _last_update_ms = now; return true; } float AP_InertialSensor_HIL::get_delta_time() { return _delta_time_usec * 1.0e-6; } uint32_t AP_InertialSensor_HIL::get_last_sample_time_micros() { return _last_update_ms * 1000; } float AP_InertialSensor_HIL::get_gyro_drift_rate(void) { // 0.5 degrees/second/minute return ToRad(0.5/60); } bool AP_InertialSensor_HIL::sample_available() { uint16_t ret = (hal.scheduler->millis() - _last_update_ms) / _sample_period_ms; return ret > 0; } bool AP_InertialSensor_HIL::wait_for_sample(uint16_t timeout_ms) { if (sample_available()) { return true; } uint32_t start = hal.scheduler->millis(); while ((hal.scheduler->millis() - start) < timeout_ms) { hal.scheduler->delay(1); if (sample_available()) { return true; } } return false; }